| 研究生: |
吳世驊 Wu, Shi-Hua |
|---|---|
| 論文名稱: |
皮米級衛星姿態控制次系統之設計與實現 Design and Implementation of a Picosat Attitude Control Subsystem |
| 指導教授: |
莊智清
Juang, Jyh-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 硬體測試迴路 、姿態控制 、皮米級衛星 |
| 外文關鍵詞: | HWIL, ADCS, PicoSat |
| 相關次數: | 點閱:121 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在台灣,成功大學的學生和技術人員組成了團隊正致力於研發並自製一枚具備三軸穩定的皮米級衛星―PACE(Platform for Attitude Control Experiment)。PACE是學術界首枚實現三軸穩定功能之皮米級衛星,其軌道高度暫定為650公里,傾斜角98度之太陽同步軌道,三軸穩定在5度以內的地球指向精度。本論文說明PACE之系統設計與發展並強調姿態控制次系統之設計與實現。當衛星脫離發射載具後,使用磁力計、磁力線圈、太陽感測器搭配磁場微分控制法則穩定衛星旋轉角速度,再者搭配陀螺儀、動量飛輪,以動量偏斜控制系統達到三軸姿態穩定。於衛星本體之Y軸上安裝一個國內自製之動量飛輪,控制衛星俯仰角度,以增加X、Z軸的指向性,另外搭配Y軸上之磁力線圈,消除章動與進動的現象,並對動量飛輪作動量卸除的功能。此外,除了模擬與分析之方式調整控制器參數,更於地面建立一套即時硬體測試迴路系統,利用原型控制器快速製作之功能模擬太空環境與衛星動態,經由衛星姿態控制之電腦執行控制律之運算,控制衛星致動器之輸出,以增加模擬之精確度。
In Taiwan, a three-axis stabilizing CubeSat, PACE (Platform for Attitude Control Experiment), is developed and manufactured by the students and staff at NCKU. PACE is unique in the sense that it is one of the first CubeSats to employ three-axis stabilization technique. The PACE requirement is to achieve 5 degree earth pointing accuracy at 650 km altitude, 98 degree inclination of sun-synchronous orbit. The thesis presents the system design and analysis of the PACE with emphasis on the design and implementation of the attitude control and determination subsystem (ADCS). After PACE is departed from the launcher, ADCS is required to stabilize the angular rate with the B-dot control law by using a three-axis magnetometer, magnetic coils, and sun sensors. Afterward, three-axis stabilization is achieved through a momentum-biased control with the use of gyro and momentum wheel. A domestically manufactured momentum wheel mounted on Y axis of body coordinate is employed to control the pitch angle and stabilize the roll/yaw dynamics. In addition, three orthogonal magnetic coils are used to eliminate nutation and precession phenomena, and prevent the momentum wheel from saturation. To assess the effectiveness of the ADCS design, a real time hardware in the loop (HWIL) system is set up to facilitate control parameter tuning and fight software development. It can enhance the simulation accuracy by using the rapid prototyping method to simulate the space environment and satellite’s movement and control the output of actuators.
[1] H. S. Ahn and S. H. Lee, “Gyroless Attitude Estimation of Sun-Pointing Satellites Using Magnetometers,” IEEE Geoscience and Remote Sensing Letters, Vol. 2, No. 1, 2005.
[2] D. H. Chang, “Magnetic and Momentum bias attitude control design for the HETE small satellite,” Proceedings of the 6th Annual AIAA/USU Conference on Small Satellite, 1992.
[3] C. J. Fong, A. Lin, A. Shie, M. Yeh, W. C. Chiou, M. H. Tsai, P. Y. Ho, C. W. Liu, M. S. Chang, H. P. Pan, S. Tsai and C. Hsiao, “Lessons Learned of NSPO’s Picosatellite Mission: YamSat – 1A, 1B, &1C,” Proceedings of the 16th AIAA/USU Conference on Small Satellites, 2002.
[4] J. C. Juang and J. J. Miau, “Overview of the PACE Satellite: a Three-Axis Stabilized CubeSat,” 1st International CubeSat Symposium, 2003.
[5] Y. W. Jan, “Attitude Control for Spacecraft Initial Acquisition by Using Two Axis Magnetic Torquers,” 45th AASRC Conference, Taiwan, December, 2003.
[6] J. C. Juang, “Controller Rapid Prototyping and Its Incorporation in Control Education,” 4th IFAC Symposium on Advances in Control Education, pp. 363-368, 1997.
[7] Z.Lu, J. Chai and X. Wang, “An Investigation into the Use of the Hardware-in-the-Loop Simulation Testing for Brushless DC Motor Drive of Hybrid Electric Vehicle,” Electrical Machines and Systems, Vol. 2, pp. 588-591, 2003.
[8] B. S. Leonard, “NPSAT1 Magnetic Attitude Control System,” Proceedings of the 16th AIAA/USU Conference on Small Satellites, 2002.
[9] A. Lin, C. L. Chang, S. Tsai, C. J. Fong, C. P. Chang, R. Lin, C. W. Liu, M. Yeh, M. H. Chung, H. P. Pan and C. H. Hwang, “YamSat: the First Picosatellite Being Developed in Taiwan,” Proceedings of the 15th AIAA/USU Conference on Small Satellites, 2001.
[10] P. Landiech, “Extensive Use of Magnetometers and Magnetic Torquers for Small Satellites Attitude Estimation and Control,” Advances in the Astronautical Sciences, Guidance and Control, Vol. 88, pp. 137-156, 1995.
[11] F. Marteau, S. B. Gabriel and E. Rogers, “Attitude Determination and Control For Small Spacecraft,” UKACC International Conference on Control, Vol. 1, No. 427, pp. 620-625, September 1996.
[12] M. L. Psiaki, F. Martel and P. K. Pal, “Three-Axis Attitude Determination via Kalman Filtering of Magnetometer Data,” Journal of Guidance, Control and Dynamics, Vol. 23, No. 3, pp. 506-514, May-June 1990.
[13] A. Ptak and K. Foundy, “Real-Time Spacecraft Simulation and Hardware-in-the-Loop Testing,” Proceedings of the 4th IEEE Real-Time Technology and Applications Symposium, 1998.
[14] A. C. Stickler and K. T. Alfriend, “Elementary Magnetic Attitude Control System,” Journal of Spacecraft and Rockets, Vol. 13, No. 5, pp. 282-287, May 1976.
[15] W. H. Steyn, Y. Hashida and V. Lappas, “An Attitude Control System and Commissioning Results of the SNAP-1 Nanosatellite,” Proceedings of the 14th AIAA/USU Conference on Small Satellite, 2002.
[16] G. Shorshi and I. Y. Bar-Itzhack, “Satellite Autonomous Navigation and Orbit Determination Using Magnetometers,” Conference on Decision and Control, pp. 542 –548, 1992.
[17] N. Sivaprakash and J. Shanmugam, “Neural Network Based Three Axis Satellite Attitude Control Using Only Magnetic Torquers,” Digital Avionics Systems Conference, 2005.
[18] J. K. Tu, S. H. Wu and C. C. Chu, “Platform for Attitude Control Experiment (PACE): An Experimental Three-Axis Stabilized CubeSat,” Proceedings of the 18th AIAA/USU Conference on Small Satellite, 2004.
[19] D. M. Vilathgamuwa, X. Yue and K. J. Tseng, “Development and Control of a 3-Axis Motion Simulator for Satellite ADCS Hardware-in-the-Loop Simulation,” The 30th Annual Conference af the IEEE Industrial Electronics Society, Vol. 1, pp. 524-529, 2004.
[20] P. Wang, Y. B. Shtessel and Y. Q. Wang, “Satellite Attitude Control Using Only Magnetorquers,” American Control Conference, pp. 222 –226, June 1998.
[21] P. C. Hughes, Spacecraft Attitude Dynamics, John Wiely & Sons, Inc., 1986.
[22] M. H. Kaplan, Modern Spacecraft Dynamics & Control, John Wiely & Sons, Inc., 1976.
[23] M. J. Sidi, Spacecraft Dynamics & Control, Cambridge University Press, 1997.
[24] J. R. Wertz, Spacecraft Attitude Determination and Control, Kluwer Academic Publishers, 1978.
[25] J. R. Wertz and W. J. Larson, Space Mission Analysis and Design, Kluwer Academic Publishers, 1991.
[26] W. E. Wiesel, Spaceflight Dynamics, McGraw-Hill Company, 1997.
[27] 莊智清, “中華衛星三號-衛星姿控測試器與整合發展環境之研製計畫(П),” 國家太空計劃室籌備處專題研究計畫成果報告, 2001.
[28] 林承宗, 張宏淵, “ROCSAT-3姿態控制系統穩定安全模式之Processor-in-the-Loop 系統,” 2003.
[29] 莊智清, 黃國興, 電子導航, 全華科技圖書股份有限公司, 2001.
[30] 林詠翔, 微衛星姿態控制次系統設計與模擬, 國立成功大學航空太空工程學系碩士論文, 2000.
[31] 陳明豐, 低軌道衛星姿態估測演算法, 國立台灣大學電機工程學系碩士論文, 2002.
[32] 孫煜明, 微微衛星姿態控制次系統之設計與模擬, 國立成功大學電機工程學系碩士論文, 2003.
[33] 李愷倫, 皮米衛星姿態判定與控制次系統之設計與測試, 國立成功大學航空太空工程學系碩士論文, 2004.
[34] 莊金剛, 姿態感測器於微衛星TUU SAT-1姿態判定系統之應用與研究, 國立中央大學機械工程學系碩士論文, 2000.
[35] 張森喬, 衛星姿態控制之即時模擬與原型控制器快速製作, 國立成功大學電機工程學系碩士論文, 2000.
[36] http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html
[37] http://www.iaalab.ncku.edu.tw/pace/
[38] http://www.utias-sfl.net/nanosatellites/CanXProgram.html
[39] http://www.dspace.de/ww/de/gmb/home.cfm
[40] http://www.honeywell.com/
[41] http://cloudcaptech.com/crista_imu.htm
[42] http://www.faulhaber-group.com/n41799/n.html
[43] http://www.space.t.u-tokyo.ac.jp/cubesat/index-e.html
[44] http://lss.mes.titech.ac.jp/ssp/cubesat/index_e.html
[45] http://www.cubesat.auc.dk/