| 研究生: |
張家榮 Chang, Chia-Jung |
|---|---|
| 論文名稱: |
斜坡矩形束縮渠道斜震波及水躍研究 Study on Shock Waves and Hydraulic Jumps in an Inclined Rectangular Chute Contraction |
| 指導教授: |
詹錢登
Jan, Chyan-deng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 143 |
| 中文關鍵詞: | 斜震波 |
| 外文關鍵詞: | Shock Waves |
| 相關次數: | 點閱:87 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以實驗方式探討斜坡矩形束縮渠道斜震波(Shock waves)與水躍(Hydraulic jumps)之水理特性。另應用二維水流數值模式進行本文斜震波數值模擬及延伸本文實驗條件外之高福祿數斜震波數值模擬。
經由五種渠床坡度搭配四種渠岸束縮角度之斜坡矩形束縮渠道斜震波實驗後,本文根據實驗結果提出下列經驗關係式,包括:斜震波之波角、共軛水深比、無因次交波位置、中心軸水深遞減率、無因次交波波高及渠道中心與渠岸處流量比等。有關模式計算本文斜震波結果顯示:斜震波之交波位置與縱、橫斷面水深,其數值均與實驗結果相近。另囿於實驗之福祿數所限,經延伸應用該模式計算高福祿數斜震波後,可確立經斜震波實驗數據迴歸分析所得之波角、無因次交波位置及無因次交波波高等關係式,在原渠床坡度與渠岸束縮角度條件不變情形下,其適用福祿數範圍從3.51提升至6.06範圍內。
本論文以一維水流連續方程及動量方程建立斜坡矩形束縮渠道水躍共軛渠寬水深比關係式(又稱共軛面積比關係式),經實驗數據驗證後,該式可用以描述水躍之共軛面積比值與修正福祿數關係。經由四種渠床坡度搭配八種渠岸束縮角度之斜坡矩形束縮渠道水躍實驗,本文根據實驗結果提出包括:水躍段沿斜坡之分力修正係數 值及重量修正係數 值隨渠床坡度變化之關係、無因次水躍長度、水躍後前福祿數比、水躍能損及水躍起跳位置關係等經驗式。前述關係式在本文渠床坡度與渠岸束縮角度條件範圍內,可成功用於計算水躍相關水理參數,以利工程設計參考。另本論文亦建立斜坡矩形束縮渠道斜震波轉為水躍之臨界條件關係,藉以判斷渠道內之流況是否為一般正向水躍或為斜震波與水躍共處之過渡流況。
This study mainly aims to deliberate the hydraulic characteristics of shock waves and hydraulic jumps in inclined chute contractions by laboratory experiments. Besides, a two-dimensional numerical model was used to simulate the experimental shock waves of present study and also extended the numerical simulation for higher approach Froude numbers of shock waves.
The experiments on shock waves in chute contractions were conducted by way of five bottom angles and four sidewall deflection angles. According to the experimental results, the empirical relations are proposed in this study for applicability, such as the shock angle, the sequent flow depth ratio on shock front, the dimensionless shockwave position, the decreasing rate of flow depth along chute axis, the dimensionless shockwave height and the discharge ratio of zone I (the area between two sides of shock front) to zone II (the area between shock front and sidewall). Furthermore, the numerical results show that the numerical values on longitudinal and transversal flow profiles are similar to the experimental ones. Moreover, the numerical results also validate the applicability of the proposed empirical relations, such as shock angle, the dimensionless shockwave position, and dimensionless shockwave height by experiments and extend its applicability for lager values of the approach Froude number from 3.51 to 6.06.
The sequent flow area ratio relation for hydraulic jumps in chute contractions is developed with one-dimensional continuity equation and the momentum equation in this study. This developed relation can validate its applicability through verification of experimental data. Besides, some empirical relations are proposed by experiments through the experimental conditions of four bottom angles and eight sidewall deflection angles in this study, such as the empirical correction factors J and K versus bottom angles, the dimensionless hydraulic jump length, the sequent Froude number ratio, the dimensionless hydraulic jump energy loss, and the dimensionless toe location of hydraulic jump. The above-mentioned relations can validate the hydraulic parameters of hydraulic jumps for engineering applications under the experimental conditions of present study. Furthermore, the relation of critical flow condition for shock waves transferring to hydraulic jumps in chute contractions has been proposed as well. This proposed relation could be used for estimation of flow condition.
1.Argyropoulos, P. (1957). “Theoretical and experimental analysis of hydraulic jump in a parabolic flume.” Proceedings of the Seventh conference, IAHR, Paper D12, Vol. II.
2.Argyropoulos, P. (1961). “The hydraulic jump and effect of turbulence on hydraulic structures; contribution to the research of the phenomenon.” Proceedings, Ninth conference, IAHR, p. 173.
3.Argyropoulos, P. (1962). “General solution of the hydraulic jump in sloping channels. ” Journal of the Hydraulics Division, ASCE, Vol.88 (HY4), 61-75.
4.Beirami, M., and Chamana, M. (2006). “Hydraulic jumps in sloping channels: Sequent depth ratio.” Journal of Hydraulic Engineering, ASCE, Vol.132 (10), 1061-1068.
5.Belanger, J. (1828). Essai sur la solution numeric de quelques problem relatifs an mouvement permenent des causcourantes (in French), Paris, France.
6.Berger, R., and Stockstill, R. (1993). “A 2d numerical model for high velocity channels.” Hydraulic Engineering 93, proc., 1993 Nat. Hydr. conf., H. Shen, S. Su, and F. Wen, eds., New York, 1085-1090.
7.Bidone, G. (1819). “Observations sur le hauteur du ressaut hydraulique en 1818.” Report (in French), Royal Academy of Science, Turin, Italy.
8.Bradley, J., and Peterka, A. (1957). “Hydraulic design of stilling basins:Stilling basin with sloping apron (Basin V).” Journal of Hydraulics Division, ASCE, Vol.83 (HY5), 1-32.
9.Bushra, A., and Noor afzal. (2006). “Hydraulic jump in circular and U-shape channels.” Journal of Hydraulic Research, 44(4), 567 -576.
10.Causon, D. M., Mingham, C. G., and Ingram, D. M. (1999). “Advances in calculation methods for supercritical flow in spillway channels.” Journal of Hydraulic Engineering, 125(10), 1039-1050.
11.Chanson, H., and Montes, J. S. (1995).“Characteristics of undular hydraulic jumps: Experimental apparatus and flow pattern.” Journal of Hydraulic Engineering, 121(2), 129-144.
12.Chow, V. T., (1959). Open Channel Hydraulics. McGraw-Hill Book Company, New York.
13.Ead, S., and Rajaratnam, N. (2002). “Hydraulic jumps on corrugated beds.” Journal of Hydraulic Engineering, ASCE, 128(7), 656-663.
14.French, R. H., (1986), Open Channel Hydraulics. McGraw-Hill Book Company, New York.
15.Gunal, M., and Narayanan, R. (1996). “Hydraulic jump in sloping channels.” Journal of Hydraulic Engineering, ASCE, Vol.122 (8), 436-442.
16.Guo, W. D., Lai, J. S., and Lin, G. F. (2007). “Hybrid flux-splitting finite volume scheme for the shallow water flow simulations with source terms.” Journal of Mechanics, (In press).
17.Hager, W., and Altinakar, M. (1984). “Infinitesimal cross-wave analysis.” Journal of Hydraulic Engineering, ASCE, Vol.110 (8), 1145-1150.
18.Hager, W. (1988). “B-jump in sloping channel.” Journal of Hydraulic Research, IAHR, Vol.26 (5), 539-558.
19.Hager, W. (1989).“Supercritical flow in channel junctions.” Journal of Hydraulic Engineering, ASCE, 115(5), 595-616.
20.Hager, W. (1989).“Hydraulic jump in U-shape channel.” Journal of Hydraulic Engineering, ASCE, 115(5), 667-675.
21.Hager, W., Schwalt, M., Jimenez, O., and Chaudhry, M. (1994). “Supercritical flow near an abrupt wall deflection.” Journal of Hydraulic Research, 32(1), 103 -118.
22.Heggen, R. (1988). “Choke angles in supercritical contractions.” Journal of Hydraulic Engineering, ASCE, Vol.114 (4), 441-445.
23.Hinds, J. (1920). “The hydraulic jump and critical depth in the design of hydraulic structures.” Engrg. News-Rec., 85(22), 1034-1040.
24.Hughes, W., and Ernest Flack, J. (1984). “Hydraulic jump properties over rough bed.” Journal of Hydraulic Research, 110(12), 1755 -1771.
25.Hsu, M. H., Su, T. H., and Chang, T. J. (2004). “Optimal channel contraction for supercritical flows.” Journal of Hydraulic Research, IAHR, 42(6), 639-644.
26.Ippen, A., and Knapp, R. (1936). “A study of high velocity flow in curved channels.” Trans. Am. Geophys. Union, Part III, 17, 516-521.
27.Ippen, A. (1943). “Gas-wave analogies in open channel flow.” Proc. 2nd Hydraulics conf., Bulletin 27, studies in Engineering, University of Iowa, Iowa.
28.Ippen, A. (1951). “Mechanics of supercritical flow.” Tans., ASCE, 116, 268-295.
29.Ippen, A., and Dawson, J. (1951). “Design of channel contractions; High velocity flow in open channels (symposium).” Trans., ASCE, 116, 326-346.
30.Ippen, A., and Harleman, D. (1956). “Verification of theory for oblique standing waves.” Trans., ASCE, 121, 678-694.
31.Kawagoshi, N., and Hager, W. (1990). “B-jump in sloping channel, II.” Journal of Hydraulic Research, IAHR, Vol.28 (4), 461-480.
32.Kindsvater, C.E. (1944). “The hydraulic jump in sloping channels,” Trans., ASCE, Vol.109, 1107-1120.
33.Klonidis, A., and Soulis, J. (2002). “An implicit scheme for steady two-dimensional free-surface flow calculations.” Journal of Hydraulic Research, 39(4), 393 -402.
34.Lai, J. S., Lin G. F. and Guo, W. D. (2005) “An upstream flux-splitting finite-volume scheme for 2D shallow water equations.” International Journal for Numerical Methods in Fluids; 48(10), 1149-1174.
35.Lai, J. S., Lin, G. F. and Guo, W. D. (2007) “Hybrid flux-splitting finite-volume scheme for the shallow water flow simulations with source terms.” Journal of Mechanics, 23(4), 229-244.
36.Lin, G. F., Lai, J. S., and Guo, W. D. (2003). “Finite-volume component-wise TVD schemes for 2D shallow water equations.” Advances in Water Resources, 26(8), 861-873.
37.Lin, G. F., Lai, J. S. and Guo, W. D. (2005) “High-resolution TVD schemes in finite volume method for hydraulic shock wave modeling.” Journal of Hydraulic Research, IAHR, 43(4), 376-389.
38.Mazumer, S., and Hager, W. (1993). “Supercritical expansion in Rouse modified and reversed transitions.” Journal of Hydraulic Engineering., ASCE, Vol.119 (2), 201-219.
39.Ohtsu, I., and Yasuda, Y. (1991). “Hydraulic jump in sloping channels.” Journal of Hydraulic Engineering., ASCE, Vol.117 (7), 905-921.
40.Rajaratnam, N. (1968). “Hydraulic jumps on rough beds.” Tans. Engineering Institute, Canada, 11(A-2), 1-8.
41.Rajaratnam, N., and Murahari, V. (1974). “Flow characteristics of sloping channel jumps.” Journal of Hydraulics Division, ASCE, Vol.100 (HY6), 731-740.
42.Reinauer, R., and Hager, W. (1998). “Supercritical flow in chute contraction.” Journal of Hydraulic Engineering, ASCE, 124(1), 55-64.
43.Rouse, H., Bhoota, B., and En-Yun Hsu (1951). “Design of channel expansions.” Trans. ASCE, 116, 347-363.
44.Schwalt, M., and Hager, W. (1994). “Shock wave reduction by bottom drop.” Journal of Hydraulic Engineering, ASCE, 120(10), 1222-1227.
45.Silvester, R. (1964). “Hydraulic jump in all shapes of horizontal channels.” Journal of Hydraulics Division, ASCE, Vol.90 (HY1), 23-55.
46.Zhao, D. H., Shen, H. W., Lai, J. S., and Tabios, G. Q. (1996). “Approximate Riemann solvers in FVM for 2D hydraulic shock wave modeling.” Journal of Hydraulic Engineering, 122(12), 692-702
47.王燦汶(1965)「坡槽水躍之研究」,中國土木水利工程學刊,第8卷,第1期,第1至11頁。.
48.易任(1974)「渠道水力學」(上下冊),東華書局。
49.連惠邦、曹文洪、胡春宏(2000)「明渠水力學」,高立圖書有限公司。
50.謝勝彥、張燿澤、張家榮(2002)「基隆河員山子分洪水工模型試驗(第一年)」計畫成果報告,經濟部水利署水利規劃試驗所。
51.郭文達,(2004)「混合通量分裂式有限體積算則在二維淺水波方程式之研發」,國立台灣大學土木工程學研究所博士論文。
52.詹錢登、張家榮(2005)「斜坡矩形束縮渠道上的水躍特性」,中國土木水利工程學刊,第17卷,第2期,第227至233頁。