| 研究生: |
柯延鴻 Ko, Yen-Hung |
|---|---|
| 論文名稱: |
具主動箝位電路高降壓順向式直流-直流轉換器之研製 Study and Implementation of High Step-down DC-DC Forward Converter with Active Clamp Circuits |
| 指導教授: |
陳建富
Chen, Jiann-Fuh 李祖聖 Li, Tzuu-Hseng S. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 高降壓 、主動箝位 、柔性切換 |
| 外文關鍵詞: | high step-down, active clamp circuit, soft-switching |
| 相關次數: | 點閱:119 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一新型高降壓直流對直流轉換器,透過整合主動箝位電路,使得本轉換器主動開關不需要操作至臨界工作週期及可達到高降壓且具柔性切換之特性,進而使得本論文所提之轉換器可達到高效率之優點。本文首先說明所提轉換器之工作原理,而後針對其完成穩態分析,透過穩態分析結果可進一步完成電路參數設計。最後,研製一輸入電壓400V,輸出電壓為24V,輸出功率200W之電路雛型,並由實驗結果驗證理論分析之可行性。由實驗結果可得,本文所研製之雛型硬體電路於輸出功率80W條件下可達到最高效率95.25%。
In this thesis, a high step-down DC-DC forward converter with active clamp circuits is proposed. By integrating two active clamp circuits into the proposed converter, the high step-down capability and soft-switching feature can be achieved without using extreme duty cycle of the active switch so that the conversion efficiency of the proposed converter can be further enhanced. In this thesis, the operation principle of the proposed converter is first addressed. Then, the steady-state analysis is presented. According to the derived equations of the steady-state analysis, one can further design the circuit parameters in hardware implementation. Finally, a laboratory prototype with 400V input voltage, 24V output voltage, and 200W output power rating is implemented to verify the validity of the proposed converter. The experimental results of the constructed converter prototype show that the highest of 95.25% can be achieved at the 80W output load condition.
[1]S. R. Bull, “Renewable energy today and tomorrow,” Proceedings of the IEEE, vol. 89, no. 8, pp. 1216-1226, Aug. 2001.
[2]G. Connor and H. W. Whittington, “A vision of true costing [renewable energy],” Engineering Science and Education Journal, vol. 10, no. 1, pp. 4-12, Feb. 2001.
[3]M. Begovic, A. Pregelj, A. Rohatgi, and C. Honsberg, “Green power: status and
perspectives,” Proceedings of the IEEE, vol. 89, no. 12, pp. 1734-1743, Dec.
2001.
[4]H. Falk, “Prolog to renewable energy today and tomorrow,” Proceedings of the IEEE, vol. 89, no. 8, pp. 1214-1215, Aug. 2001.
[5]T. Gilchrist, “Fuel cell to the fore,” IEEE Spectrum, vol. 35, no. 11, pp.35-40, 1998.
[6]M. W. Ellis, M. R. Von Spakovsky, and D. J. Nelson, “Fuel cell system: efficient, flexible energy conversion for the 21st century,” Proceedings of the IEEE, vol. 89, no. 12, pp. 1808-1818, 2001.
[7]F. Blaabjerg, Z. Chen, and S. B. Kjaer, “Power electronics as efficient interface in dispersed power generation systems,” IEEE Transactions on Power Electronics, vol. 19, no. 5, pp. 1184-1194, Sep. 2004.
[8]B. K. Bose, “Global warming: energy, environment pollution, and the impact of power electronics,” IEEE Industrial Electronics Magazine, vol. 4, no. 1, pp. 6-17, Mar. 2010.
[9]D. D. C. Lu and V. G. Agelidis, “Photovoltaic-battery-powered dc bus system for common portable electronic devices,” IEEE Transactions on Power Electronics, vol. 24, no. 3, pp. 849-855, Mar. 2009.
[10]K. Sun, L. Zhang, Y. Xing, and J. M. Guerrero, “A distributed control strategy based on dc bus signaling for modular photovoltaic generation systems with battery energy storage,” IEEE Transactions on Industrial Electronics, vol. 26, no. 10, pp. 3032-3045, Oct. 2010.
[11]H. R. E. Larico and I. Barbi, “Three-phase push–pull dc–dc converter: analysis, design, experimentation,” IEEE Transactions on Industrial Electronics, vol. 59, no. 12, pp. 4629-4636, Dec. 2012.
[12]M. Pahlevaninezhad, J. Drobnik, P. K. Jain, and A. Bakhshai, “A load adaptive control approach for a zero-voltage-switching dc/dc converter used for electric vehicles,” IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp. 920-933, Feb. 2012.
[13]E. H. Ismail, M. A. Al-Saffar, and A. J. Sabzali, “High conversion ratio DC-DC converters with reduced switch stress,” IEEE Transactions on Circuits and Systems I, vol. 55, no. 7, pp. 2139-2151, Aug. 2008.
[14]Q. Zhao and F. C. Lee, “High-efficiency, high step-up DC-DC converters,” IEEE Transactions on Power Electronics, vol. 18, no. 2, pp. 65-73, Jan. 2003.
[15]吳志鋐,陳建富,鄭銘揚,「交錯式二次側磁重置順向轉換器之研製」,國立成功大學電機工程研究所碩士論文,中華民國97年6月。
[16] K. Yasui, I. Hirota, T. Iwai, H. Omori, N. A. Ahmed, T. A. Ahmed, and H. Sugimura, “New boost-active clamp one-stage soft switching PWM high frequency inverter using trench-gate IGBTs,” 31st Annual Conference of IEEE Industrial Electronics Society, 2005.
[17]X. Wu, J. Zhang, X. Ye, and Z. Qian, “A family of non-isolated ZVS DC–DC converter based on a new active clamp cell,” 31st Annual Conference of IEEE Industrial Electronics Society, 2005.
[18]R. J. Wai, L. W. Liu, and R. Y. Duan, “High-efficiency voltage-clamped DC-DC converter with reduced reverse-recovery current and switch voltage stress,” IEEE Transactions on Industrial Electronics, vol. 53, no. 1, pp. 272-280, Feb. 2006.
[19]P. H. Kuo, T. J. Liang, K. C. Tseng, J. F. Chen, and S. M. Chen, “An isolated high step-up forward/flyback active-clamp converter with output voltage lift,” 2010 IEEE Energy Conversion Congress and Exposition, pp. 542-548, 2010.
[20]J. A. Cobos, O. Garcia, J. Sebastih, J. Uceda, “RCD clamp PWM forward converter with self driven synchronous rectification,” International Conference on Industrial Electronics, Control, and Instrumentation, 2003.
[21]K. B. Park, C. E. Kim, G. W. Moon, and M. J. Youn, “Three-switch active-clamp forward converter with low switch voltage stress and wide ZVS range for high-input-voltage applications,” IEEE Transactions on Power Electronics, vol. 25, no. 4, pp. 889-898, Apr. 2010.
[22]K. B. Park, G. W. Moon, and M. J. Youn, “Two-switch active-clamp forward converter with one clamp diode and delayed turnoff gate signal,” IEEE Transactions on Industrial Electronics, vol. 58, no. 10, pp. 4768-4772, Oct. 2011.