| 研究生: |
許順泰 Hsu, Shun-Tai |
|---|---|
| 論文名稱: |
設計與發展小動物骨質疏鬆實驗用之電磁場刺激治療儀 Design and Development of Electromagnetic Field Instrument for Osteoporosis Study in Small Animal |
| 指導教授: |
鍾高基
Chung, Kau-Chi |
| 共同指導教授: |
鄭國順
Cheng, Kuo-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 骨質疏鬆症 、電磁場 |
| 外文關鍵詞: | Osteoporosis, Electromagnetic Field |
| 相關次數: | 點閱:123 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於醫療科技的進步造成人類壽命延長,使得全球高齡人口的比例劇增,使骨質疏鬆症成為全世界第二大流行病。根據統計,全球超過五十歲以上的女性約有1/3罹患骨質疏鬆症,男性約為1/5。在台灣,依健保紀錄指出當罹患骨質疏鬆症的老人其骨折後一年內之死亡率,女性約為15%,男性則高達22%。傳統治療骨質疏鬆症的方法為服用鈣片、荷爾蒙或藥物,但大部分藥物易產生副作用,造成體內器官負擔及不舒服感,亦或是副作用少卻價格昂貴,因此發展使用外在的物理性刺激治療骨質疏鬆症已成為趨勢。本研究目的為設計與發展小動物骨質疏鬆實驗用之電磁場刺激治療儀,特定目標如下:(1) 設計電磁場刺激治療儀之驅動器;(2) 設計電磁場刺激治療儀之電磁場線圈;(3) 校正電磁場刺激治療儀。
根據臨床需求與功能性設計,包含兩種不同的電磁場波形(脈衝波、振盪波)、可調整的高電磁場強度(1.0 T)、60 mm x 100 mm的電磁場刺激面積以及線圈冷卻。本研究設計並完成電磁場刺激治療儀之雛型,其中驅動器包含:電磁場強度控制模組、升壓直流電源供應模組、儲電電容模組、驅動器保護模組、電磁場波形控制模組;電磁場線圈包含:電磁場線圈模組與電磁場線圈冷卻模組。雛型完成後校正其設計功能,包含儲電電容值之校正、線圈電感值之校正、電磁場強度之校正、電磁場波形之校正、磁面電磁場強度分佈之校正、不同磁面距離的電磁場強度分佈之校正。
本研究校正結果顯示:(1) 可產生兩個驅動電流波形訊號,脈衝波(波形時間:7 ms)與振盪波(波形時間:22 ms);(2) 可調整平均的電磁場強度Tavg為0.4 ~ 1.0 T,且N極與S極的磁面電磁場強度並無明顯的差異;(3)極性不同且面積為60 mm x 100 mm的電磁場刺激極面,其各點電磁場強度會由四周向中心點逐漸衰減,至中心點(P7)的最大衰減約為0.2 T;(4)電磁場強度會因距離的增加而造成強度的衰減,在最高距離100 mm時,強度衰減至約0.12 T。未來應用本研究完成的電磁場刺激治療儀,探討其治療骨質疏鬆動物模型之可行性,並驗證儀器的電性安全、改善電磁場強度空間衰減問題以及增加儀器操作的便利性。
Due to the advance of medical technology, the human life expectancy has dramatically increased; the world’s elderly population also has upped significantly. This entire situation has led to the fact that osteoporosis is the second largest epidemic in the world. According to global statistics, 1/3 of the female population over the age of 50 suffers from osteoporosis, and its counterpart, male, 1/5. In Taiwan, the record of health insurance indicates that the mortality rate within one year after suffering from fracture in the elderly having osteoporosis is approximately 15% for female, and up to 22% for male. The conventional treatments for osteoporosis were taking calcium tablets, hormone or certain drug medications, but most of them were either pretty costly or often inductive of side effects to the user. Therefore it has become a trend to develop external physical treatments for osteoporosis. The purpose of this study is to design and develop electromagnetic field (EMF) instrument for osteoporosis study in small animal. Three specific goals are to (1) design the driving system of electromagnetic field instrument; (2) design the coil for the electromagnetic field, and (3) calibration of the prototype.
Based on clinical as well as functional requirements, the electromagnetic field instrument includes two different field waveforms (pulse, oscillation), adjustable intensity (0.4 ~ 1.0 T), a stimulation area (60 mm x 100 mm) of the electromagnetic field, and a coil cooling system. This study fulfills the design and completion of the prototype of the electromagnetic field instrument. The prototypical driving system comprises modules of intensity controller, step-up DC power supplier, electrical storage capacitor, waveform controller and driver protector; the electromagnetic coil includes the field coil itself and its own coil cooling system. This study further complete the calibration of the prototype, including capacitance of the storage capacitor, inductance of the coil, adjustable intensity range of EMF, the waveform of EMF, the intensity distribution on the stimulation plane of EMF, and the intensity distribution on different magnetic surface distances of EMF.
This study has shown four results. (1) two types of drive current waveforms (pulse, duration: 7 ms; oscillation, duration: 22 ms) can be generated; (2) the adjustable range of the EMF intensity Tavg is between 0.4 T to 1.0 T, and there is no major difference between the EMF strength of N pole surface and that of S pole one; (3) on stimulation areas (60 mm x 100 mm), the EMF intensity on different points would gradually decrease along to the center point, and at the center point (P7), the maximum attenuation is about 0.2 T; (4) the intensity of the field will decrease due to the increase of the magnetic surface distances; at the maximum distance of 100 mm, the intensity attenuation is about 0.12 T. In the future, the completed EMF medical prototype in this study should be further applied to explore the feasibility of osteoporosis treatment on animal models, verify the electrical safety of the instrument, decrease the spatial attenuation of EMF and improve the operational convenience of the instrument.
1.國際骨質疏鬆基金會(International Osteoporosis Foundation, IOF)。
2.美國國家衛生研究院(National Institutes of Health, NIH)。
3.行政院衛生署國民健康局。
4.Elaine, N.(2005), Human anatomy(4th edition).
5.洪世彥(2007),「脈衝磁場刺激研發及對骨髓間葉幹細胞之骨化效應」,國立成功大學醫學工程研究所碩士論文。
6.Kanis, J.A.(1994),Osteoporosis, Blackwell Science Ltd.
7.中華民國骨質疏鬆症學會
8.張渝珊(2011),「探討磁場刺激應用於於大鼠雙側軟巢切除後骨質疏鬆之影響」,國立成功大學醫學工程研究所碩士論文。
9.Khaltaev, N., Pfleger, B.A., et al.(2004),WHO scientific group on the assessment of osteoporosis at primary health care level,WHO.
10.張昱婷(2009),「探討物理系刺激對於骨質疏鬆症之影響」,國立成功大學醫學工程研究所碩士論文。
11.美國國家衛生科學研究院(National Institute of Environmental Health Sciences, NIEHS)。
12.謝婉華、顏壁梅、葛維忠編譯(2004),最新電磁場健康問題探討(Question and Answers about EMF),台灣輻射安全促進會(NARP)編印。
13.Potenza, L., Ubaldi, L., De Sanctis R., et al.(2004), “Effects of a static magnetic field on cell growth and gene expression in Escherichia col, ” Mutation Research, 561: 53-62.
14.Harvey, N. Mayrovitz, Edye, E. Groseclose(2005), “Effects of a static magnetic field of either polarity on skin microcirculation,” Micro-vascular Research, 69: 27-27.
15.Okudan, B., Keskin, A.U., et al.(2006), “DEXA analysis on the bones of rats exposed in utero and neonatally to static and 50 Hz electric fields,” Bioelectromagnetics, 27(7): 589-592.
16.Nakagara, T., Yaguchi, H., Yoshida, M., Miyakoshi, J.(2002), “Effects of exposure of CHO-K1 cells to a 10-T static magnetic field,” Radiology, 224(3):817-822.
17.Iika, B. Schiffer, Wolfgang, G. Schreiber, et al.(2003), “No Influence of Magnetic Fields on Cell Cycle Progression Using Conditions Relevant for Patients during MRI,” Bioelectromagnetics, 24:241-250.
18.Deventer, T.E., Saunder, R., Repacholi, M.H.(2005), “WHO health risk assessment process for static fields,” Progress in Biophysics and Molecular Biology, 87:355-363.
19.Frank, G. Shellock, John, V. Crues(2004), “MR procedures: biologic effects, safety, and patient care,” Radiology, 232(3):635-652.
20.Sollazzo, V., Massari, L., and Pezzetti, F.(1996), “Effect of low-frequency pulsed electromagnetic fields on human osteoblast-like cells in vitro,” Electro-and Magnetobiolog, 15(1):75-83.
21.Sollazzo, V., Traina, G.C., DeMattei, M., Pellati, A., Pezzetti, F., and Caruso, A.(1997),“Responses of human MG-63 osteosarcoma cell line and human Osteoblast-like cell to pulsed electromagnetic fields,” Bioelectromagnetics, 14:541-547.
22.Mattei, M.D., Caruso, A., Traina, G.C., Petteii, F., Baroni, T., and Sollazzo, V.(1999),“Correlation between pulsed electromagnetic fields exposure time and cell proliferation increase in human osteosarcoma cell lines and human normal Osteoblast cells in vitro,” Bioelectromagnetics, 20(3): 177-182.
23.Simko, M., Kriehuber, R., Weiss, D.G., and Luben, R.A.(1988), “Effects of 50 Hz EMF exposure on micronucleus formation and apoptosis in transformed and non-transformed human cell lines,” Bioelectromagnetics, (19):85-91.
24.Heermeier, K., Spanner, M., Trager, J., Gradinger, R., Strauss, P.G., Kraus, W., and Schmidt, J.(1998),“Effects of extremely low-frequency electromagnetic field (EMF) on collagen type I mRNA expression and extracellular matrix synthesis of human osteoblastic cells,” Bioelectromagnetics, 19:222-231.
25.Lohmann, C.H., Schwartz, Z., Liu, Y., Guerkov, H., Dean, D.D., Simon, B. and Boyan, B.D.(2000),“Pulsed Electromagnetic Field Stimulation of MG-63 Osteoblast-like Cells Affects Differentiation and Local Factor Production,” Journal of Orthopaedic Research, 18:637-646.
26.McLeod, K.J., and Collazo, L.(2000),“Suppression of a differentiation response in MC-3T3-E1 Osteoblast-like cells by sustained, low-level, 30 Hz magnetic-field exposure,” Radiation Research, 153:706-714.
27.Molen, M.A.V., Donahue, H.J., Rubin, C.T., and McLeod, K.J.(2000),“Osteoblastic networks with deficient coupling : Differential effects of magnetic and electric field exposure,”Bone, 27(2):227-231.
28.Fitzsimmons, R.J., Ryaby, J.T., Magee, F.P., and Baylink, D.J.(1994),“Combined magnetic fields increased net calcium flux in bone cells,”Calcified Tissue International, 55:376-380.
29.Fitzsimmons, R.J., Ryaby, J.T., Magee, F.P., and Baylink, D.J.(1995),“IGF-II receptor number is increased in TE-85 osteosarcoma cells by combined magnetic fields,”Journal of Bone and Mineral Research, 10(5):812-819.
30.林摯鈞(2007),「電磁場刺激對於人類間葉幹細胞之增殖與骨分化作用之探討」,高雄醫學大學生理及分子醫學研究所碩士論文。
31.Potenza, L., Ubaldi, L., De Sanctis, R., De Bellis, R., Cucchiarini, L., Dachà, M.(2004),“Effects of a static magnetic field on cell growth and gene expression in Escherichia coli,”Mutation Research, 561:53-62.
32.Harvey, N. Mayrovitz, Edye, E. Groseclose(2005), “Effects of a static magnetic field of either polarity on skin microcirculation,” Micro-vascular Research, 69: 24-27.
33.Okudan, B., Keskin, A.U., et al.(2006), “DEXA analysis on the bones of rats exposed in utero and neonatally to static and 50 Hz electric fields,” Bioelectromagnetics, 27(7): 589-592.
34.Nakagara, T., Yaguchi, H., Yoshida, M., Miyakoshi, J.(2002), “Effects of exposure of CHO-K1 cells to a 10-T static magnetic field,” Radiology, 224(3):817-822.
35.Iika, B. Schiffer, Wolfgang, G. Schreiber, et al.(2003), “No Influence of Magnetic Fields on Cell Cycle Progression Using Conditions Relevant for Patients during MRI,” Bioelectromagnetics, 24:241-250.
36.Deventer, T.E., Saunder, R., Repacholi, M.H.(2005), “WHO health risk assessment process for static fields,” Progress in Biophysics and Molecular Biology, 87:355-363.
37.Frank, G. Shellock, John, V. Crues(2004), “MR procedures: biologic effects, safety, and patient care,” Radiology, 232(3):635-652.
38.Spadaro, J.A.(1997),“Mechanical and electrical interactions in bone remodeling,” Bioelectromanetics, 18(3):193-202.
39.Fukada, E., Yasuda, I.(1957),“On the piezoelectric effect of bone,” Journal of the Physical Society of Japan, 12:1158-1162.
40.Bassett, C.A.L., Pawluk, R.J., and Pilla, A.A.(1974),“Augmentation of bone repair by inductively-coupled electromagnetic fields,” Science, 184:575-577.
41.Bassett, C.A.L., Pawluk, R.J., and Becker, R.O.(1964),“Effect of electrical current on bone in vivo,” Nature, 204:652-655.
42.Bassett, C.A.L., Pawluk, R.J., and Pilla, A.A.(1974),“Acceleration of fracture repair by electromagnetic fields. A surgically noninvasive method,” Annals of the New York Academy of Sciences, 238:242-262.
43.Bassett, C.A.L., Valdes, M.G., and Hernandez, E.(1982),“Modification of fracture repair with selected pulsing electromagnetic fields,”Journal of Bone and Joint Surgery, 64-A(6):888-895.
44.Mishima, S.(1988),“The effect of long-time P.E.M.F. stimulation on experimental osteoporosis of rats,”Journal of University of Occupational and Environmental, 10(1):31-45.
45.Rubin, C.T., McLeod, K.J., and Lanyon, L.E.(1989),“Prevention of osteoporosis by pulsed electromagnetic fields,”Journal of Bone and Joint Surgery, 71:411-417.
46.McLeod, K.J., and Rubin, C.T.(1992),“The effect of low frequency electrical fields on osteogenesis,”Journal of Bone and Joint Surgery, 74(6):920-929.
47.Skerry, T.M., Pead, M.J., and Lanyon, L.E.(1991),“Modulation of bone loss during disuse by pulsed electromagnetic fields,”Journal and Orthopaedic Research, 9:600-608.
48.Yamamoto, T.T., Kawakami, M., and Sakuda, M.(1992),“Effect of a pulsing electromagnetic field on demineralized bone-matrix-induced bone formation in a bony defect in the premaxilla of rats,”Journal of Dental Research, 71(12):1920-1925.
49.Cane, V., Botti, P., and Soana, S.(1993),“Pulsed magnetic fields improve osteoblast activity during the repair of an experimental osseous defect,” Journal of Orthopaedic Research, 11:664-670.
50.Landry, P.S., Sadasivan, K.K., Marino, A.A., and Albright, J.A.(1997), “Electromagnetic fields can affect osteogenesis by increasing the rate of differentiation,”Clinical Orthopaedics and Related Research, 338:262-270.
51.Bassett, C.A.L., Pawluk, R.J., Pilla, A.A.(1974),“Acceleration of fracture repair by electromagnetic fields A surgically noninvasive method,” Annals of the New York Academy of Sciences, 238:242-262.
52.Sakai, Y., Patterson, T.E., Ibiwoye, M.O., Midura, R.J., Zborowski, M., Grabiner, M.D., Wolfman, A.(2006),“Exposure of mouse preosteoblasts to pulsed electromagnetic fields reduces the amount of mature, type I collagen in the extracellular matrix,”Journal of Orthopaedic Research, 24:242-253.
53.Diniz, P., Shomura, K., Soejima, K., Ito, G.(2002),“Effects of pulsed electromagnetic field stimulation on bone tissue like formation and dependent on the maturation stages of the osteoblasts,” Bioelectromagnetics, 23:398-405.
54.余守龍(2010),「永磁無刷起動發電機之設計與實現」,國立成功大學系統及船舶機電工程學系碩士論文。
55.陳柏霖(2011),「探討物理性刺激應用於類固醇誘發股骨頭骨質改變之影響」,國立成功大學醫學工程研究所碩士論文。
56.楊榮森、鄭金寶、曹昭懿(2007),骨質疏鬆症骨折,健康文化編印。
57.Robert, W.B., James, D.H., Charles, C.B.(2006), Rockwood and Green’s Fractures in adults(6th edition), Lippincoot Williams & Wilkins.
58.Harry, N.H., Steven, R.G., Frank, J.E., Godrdon, R.B., Richard, A.B.(2006), Rothman-Simeone The Spine (5th edition).
59.馮琮涵等譯(2006),人體解剖學(第三(更新)版),偉明圖書有限公司編印。
60.White, A.A., Panjabi, M.M.(1978), Clinical Biomechanics of the Spine, Philadelphia:J. B. Lippincott Co..
61.Asmussen, E., and Klausen, K.(1962), Form and function of the erect human spine, Clin Orthop..
62.Wilke, H.J., Neef, P., Caimi, M., et al.(1999), “New in vivo measurements of pressures in the intervertebral disc in daily life,” Spine, 24:755.
63.世界衛生組織國際電磁場計畫( http://www.who.int/peh-emf )。
64.Sollazzo, V., Traina, G.C., DeMattei, M., Pellati, A., Pezzetti, F., and Caruso, A.(1997),“Responses of human MG-63 osteosarcoma cell line and human Osteoblast-like cell to pulsed electromagnetic fields,”Bioelectromagnetics, 14:541-547.
65.張持忠編著(1987),應用電磁學(下),全華科技圖書股份有限公司編印。
66.金重勳主編(2002),磁性技術手冊(Handbook of magnetic technologies),中華民國磁性技術協會編印。
67.王月清,吳桂生,王石編著;嚴考豊編修(2007),工程電磁學導論(Introduction to engineering electromagnetics),新文京開發編印。
68.蔡仁祥、陳淑瑩編譯(2010),解剖學,台灣培生教育出版股份有限公司編印。