簡易檢索 / 詳目顯示

研究生: 胡忠信
Hu, Chung-Shing
論文名稱: 以壓力感測器陣列進行中醫三部九候脈診的穩健性研究
Three Positions Nine Indicators Pulse Diagnosis Robust Study in Traditional Chinese Medicine Using Pressure Sensor Array
指導教授: 羅錦興
Luo, Ching-Hsing
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 48
中文關鍵詞: 傳統中國醫學雙感測脈診儀脈診三部九候感測器陣列切診
外文關鍵詞: Traditional Chinese Medicine(TCM), Bi-Sensing Pulse Diagnosis Instrument(BSPDI), pulse diagnosis, THREE POSITIONS and NINE INDICATORS(TPNI), sensor array, palpation
相關次數: 點閱:259下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對傳統中醫而言,脈診是重要的診斷方式之一。中醫脈診除了給人们一種非常主觀及模糊難解的印象外,就在於把脈過程中,中醫師以食、中、無名指,於病人手腕寸、關、尺的位置,施以浮、中、沉力道的把脈手法。運用此一手法,可使醫師手指在病人的手腕皮膚上,產生不同的位移,同時在浮、中、沉不同的深度下,取得病人的脈象。而此脈診的定位方式,至今仍未清楚地發掘出來。本文提出一壓力感測器陣列裝置於一脈波測試平台,又提出一雙感測脈診儀。其中脈波測試平台用來測試壓力感測器陣列的穩定性和可靠度,同時得到三維脈波圖譜。而雙感測脈診儀,可以進行三部九候脈診的量測,以模擬中醫師把脈的手法,取得三部九候的九個三維脈波圖譜。此圖譜不僅代表中醫師指下感覺的量化數據,也可求得其六個核心特性參數,包含脈的力道、脈率、脈長、脈寬及脈的上升、下降斜率。從成對樣本t-測試的結果,可指出在相隔10分鐘,於相同把脈位置,前、後取樣所得兩脈波的六個參數,沒有明顯差異,顯示壓力感測器陣列的穩定性和可靠度。由變異數分析的結果,可知在不同的按脈深度,脈波的六個參數除脈率外,其他參數值都不相同,顯示按脈深度具有臨床意義。由三部九候的三維脈波圖譜,可以顯示醫師指下對脈波的感覺,以發掘傳統中醫書籍中,以經驗為依據的手指脈象判讀的模型。

    Pulse diagnosis is one of the most important examinations in Traditional Chinese Medicine (TCM). Regardless the fact of the subjectivity and fuzziness of pulse diagnosis in TCM, the displacement of Fu (superficial pressure), Zhong (medium pressure), Chen (deep pressure) at the location of Cun (upper), Guan (medium), Chi (lower) on the wrist during pulses diagnosis is still under discovering so far. In this paper, a Pressure Sensor Array assembled with a pulse testing platform was provided and a Bi-Sensing Pulse Diagnosis Instrument (BSPDI). The pulse testing platform is used to test the stability, reliability of the Pressure Sensor Array and obtain three-dimension pulse mapping (3DPM). On the other hand, BSPDI can go on measuring THREE POSITIONS and NINE INDICATORS (TPNI) to simulate the pulse taking methods of the TCM’s doctor and be obtained the nine plots of 3DPM from TPNI. The 3DPMs are not only presented the quantized data of the finger-feeling of TCM’s doctor but also identified the core characteristics of 3DPM, including strength, rate, length, width and trends. The results of a paired samples t-test reveal that the six core characteristics of the two pulses obtained from the Pre- and Post-sampling, during the 10-minute period and on the same pulse-taking position, there are not distinct differences which present the stability, reliability of the pressure sensor array. ANOVA indicate that, the six core characteristics except RATE, the differences of the core characteristics exist among different pulse taking depths. The results reveal that there are some clinic meanings consistent with the pulse-taking depths. From the 3DPM of the TPNI, the finger-feeling of the pulses of the TCM’s doctor can be displayed to discover the empirical finger-reading models published in the TCM books.

    TABLE OF CONTENT…………………………………………VI LIST OF TABLES………………………………………………VIII LIST OF FIGURE………………………………………………IX Chapter 1 Introduction……………………………………………1 Chapter 2 Materials and Methods…………………………………5 2.1 Tactile Capacitive Array Sensor and Sensor Testing Platform…………………………………………………………………5 2.2 Bi-Sensing Pulse Diagnosis Instrument…………………10 2.3 Software……………………………………………………11 2.4 THREE POSITIONS and NINE INDICATORS (TPNI)…11 2.5 Clinic test……………………………………………………13 2.5.1 Clinic test for Array Sensor with Sensor Testing Platform…………………………………………13 2.5.2 Clinic test for TPNI with BSPDI…………………………14 2.6 Signal analysis and 3D pulse mapping……………………16 2.7 Statistical Method…………………………………………20 Chapter 3 Results…………………………………………………21 3.1 Pulse signals of the Tactile Capacitive Array Sensor………21 3.2 Performance test of the Tactile Capacitive Array Sensor with pulse…………………………………………………24 3.3 TPNI pulse signals for clinic test by BSDPI …………………26 Chapter 4 Discussion……………………………………………30 4.1 Advantages of the Tactile Capacitive Array Sensor………30 4.2 Verify feasibility of the Tactile Capacitive Array Sensor in Clinic………………………………………………………34 4.3 The view of 3DPM in the clinic test…………………………38 4.4 The examining the conditions of pulse by BSPDI……………38 Chapter 5 Conclusions…………………………………………39 Acknowledgements………………………………………………41 References…………………………………………………………42 VITA………………………………………………………………46

    [1] Lufen Wang, compiler in chief, Zhaoguo Li, Bai Bao, translators in chief, “Diagnostics of Traditional Chinese Medicine,” a textbook published by Publishing House of Shanghai University of Traditional Chinese Medicine, 2000.
    [2] Y.Z. Yoon, M.H. Lee, and K.S. Soh, “Pulse type classification by varying contact pressure,” IEEE Eng. Med. Biol. Mag., vol. 19, no. 6, pp. 106-110, Nov.-Dec., 2000.
    [3] C.C. Wei, C.M. Huang, and Y.T. Liao, “The exponential decay characteristic of the spectral distribution of blood pressure wave in radial artery,” Comput. Biol. Med., vol. 39, no. 5, pp. 453-459, 2009.
    [4] B.N. Li, B.B. Fu, and M.C. Dong, “Development of a mobile pulse waveform analyzer for cardiovascular health monitoring,” Comput. Biol. Med., vol. 38, no. 4, pp. 438-445, 2008.
    [5] L.S. Xu, K.Q. Wang, and D. Zhang, “Modern research on Traditional Chinese pulse diagnosis,” EJOM, vol. 4, pp. 46-54, 2004.
    [6] Y.Y.L. Wang, W.B. Chiu, M.Y. Jan, J.G. Bau, S.P. Li and W.K. Wang, “Analysis of transverse wave as a propagation mode for the pressure pulse in large arteries,” J. Appl. Phys., vol. 102, no. 6, pp. 064702-064702-4, 2007.
    [7] Y.Y.L. Wang, W.K. Sze, J.G. Bau, S.H. Wang, M.Y. Jan, T.L. Hsu, and W.K. Wang, “The ventricular-arterial coupling system can be analyzed by the eigenwave modes of the whole arterial system,” Appl. Phys. Letter, vol. 92, no. 15, pp. 153901 - 153901-3, 2008.
    [8] C.C. Tyan, S.H. Liu, J.Y. Chen, J.J. Chen, and W.M. Liang, “A novel noninvasive measurement technique for analyzing the pressure pulse waveform of the radial artery,” IEEE Trans. Biomed. Eng., vol. 55, no. 1, pp. 288-297, Jan. 2008.
    [9] H.W. Jih, S.C. Rong, and A.J. Joe, “A novel pulse measurement system by using laser triangulation and a CMOS image sensor,” Sensors, vol. 7, no. 12, pp. 3366-3385, 2007.
    [10] A.H. Zhang, Y.P. Li, D. Yu, and W.G. Guo, “Pulse signals detection by digital image correlation,” BMEI, pp. 218-222, May 27-30, 2008.
    [11] W.C. Tang, and H.J. Sun, “The detected method of multipath of pulse conditions and research of transducer,” Chin. J. Tradit. Med. Sci. Technol., vol. 5, pp. 319-320, 2000.
    [12] J.X. Chen, and F. Liu, “Research on characteristics of pulse delineation in TCM and omnidirectional,” ITME, pp. 536-538, Dec. 12-14, 2008.
    [13] G.C. Jin, M. Yu, and N.K. Bao, “Research of multi-point pulse wave computer measurement system using PVDF,” J. Tsinghua university, Vol. 39, No. 8, pp. 649-652, 1999.
    [14] D.G. Hwang, Y.K. Choi, H.S. Lee, D.H. Park, S.S. Lee, G.W. Kim, S.G. Lee, and S.J. Lee, “Improvement of Pulse diagnostic apparatus with array sensor of magnetic tunneling junctions,” J Appl Phys, Vol. 99, No. 8, pp.08R908-08R908-3.
    [15] J.G. Webster, Medical instrumentation application and design, New York: Wiley, 2009.
    [16] L.S. Xu, D. Zhang, K.Q. Wang, N.M. Li, and X.Y. Wang, “Baseline wander correction in pulse waveforms using wavelet-based cascaded adaptive filter,” Comput. Biol. Med., Vol. 37, no. 5, pp. 716-731, 2007.
    [17] P.Y. Zhang, and H.Y. Wang, “A framework for automatic time-domain characteristic parameters extraction of human pulse signals,” EURASIP, vol. 2008, pp. 1-9, Jan. 2008.
    [18] L.Y. Wei, and P. Chow, “Frequency-distribution of human pulse spectra,” IEEE Trans. Biomed. Eng., vol. 32, no. 3, pp. 245-246, 1985.
    [19] Y.Y.L. Wang, C.C. Chang, J.C. Chen, H. Hsiu, and W.K. Wang, “Pressure wave propagation in arteries,” IEEE Eng. Med. Biol. Mag., vol.16, no. 1, pp. 51-56, Jan.-Feb., 1997.
    [20] Y.J. Jeon, J.U. Kim, H.J. Lee, H.H. Ryu, Y.J. Lee, and J.Y. Kim, “A clinical study of the pulse wave characteristics at the three pulse diagnosis position of chon, gwan and cheok,” eCAM, doi:10.1093/ecam/nep150, 2009.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE