| 研究生: |
劉純成 Liu, Chun-Cheng |
|---|---|
| 論文名稱: |
高速低耗能逐漸趨近式類比至數位轉換器之設計 Design of High-Speed Energy-Efficient Successive-Approximation Analog-to-Digital Converters |
| 指導教授: |
張順志
Chang, Soon-Jyh |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 逐漸趨近式 、類比至數位轉換器 |
| 外文關鍵詞: | SAR ADC |
| 相關次數: | 點閱:150 下載:72 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出三個應用於逐漸趨近式類比至數位轉換器的電路設計技術,並且透過實際的晶片下線和量測驗證,證實所提出之電路設計技術可以有效提升電路的操作速度以及降低每次轉換所消耗的能量。所提出的電路設計技術以及晶片實作成果簡述如下:
第一個技術為單調式的電容切換機制,其比傳統架構的切換方式節省約81.3%的切換能量以及50%的取樣電容。在0.13微米互補式金氧半電晶體製程下,我們利用此技術來實現一個10位元,每秒5千萬次取樣的逐漸趨近式類比至數位轉換器。此類比至數位轉換器在1.2伏特的電壓下,其功率消耗為0.92毫瓦,有效位元為8.48 bits,等效的FOM僅為52 fJ/conversion-step。然而,單調式的電容切換機制會導致比較器輸入端訊號共模電壓的改變,使得比較器的動態偏移嚴重影響電路的效能。為了改善這個問題,我們提出一個改良版的比較器電路,可以有效控制比較器的動態偏移量。此外,在電路內部改採用非同步操作方式以避免使用數倍於取樣速度的高頻時脈訊號,降低系統整合的複雜度。同樣在0.13微米互補式金氧半電晶體製程下,我們實現另一個10位元,每秒5千萬次取樣的逐漸趨近式類比至數位轉換器。在1.2伏特的電壓下,其功率消耗為0.826毫瓦,有效位元提升為9.18 bits,等效的FOM僅為29 fJ/conversion-step。
第二個技術為二進制的錯誤補償機制。高速操作的逐漸趨近式類比至數位轉換器,由於每個位元週期的時間非常短,常常在DAC電壓還沒穩定的時候就必須要做下一次的比較,DAC電壓穩定的問題嚴重影響電路的效能,也限制了電路的操作速度。我們提出了一個二進制的錯誤補償機制,在電路中插入額外的補償位元來做錯誤校正,因此比較器可以在DAC還沒穩定的時候先做比較,以提升電路操作速度。在65奈米互補式金氧半電晶體製程下,我們利用此技術來實現一個10位元,取樣速度可以達到每秒1億次的逐漸趨近式類比至數位轉換器。在1.2伏特的電壓下,其功率消耗為1.13毫瓦,有效位元為9.51 bits,等效的FOM僅為15.5 fJ/conversion-step。
第三個技術則是利用一個輔助預測電路,來避免不必要的電容切換,此技術可以省下40-45%的電容切換能量消耗。配合第一個技術,電容切換的能量消耗可以比傳統方法減少約90%左右。除此之外,這個技術還能改善電路的靜態以及動態效能。在0.18微米互補式金氧半電晶體製程下,我們利用此技巧來實現一個10位元,每秒1千萬次取樣的逐漸趨近式類比至數位轉換器。在1伏特的電壓下,其功率消耗僅為98微瓦,有效位元為接近理想的9.83 bits,等效的FOM僅為11 fJ/conversion-step。
This dissertation proposes three circuit design techniques for successive-approximation register (SAR) analog-to-digital converters (ADCs). According to the measurement results of the proof-of-concept prototypes, the proposed techniques are able to improve the operating speed and achieve excellent energy efficiency. The proposed techniques and chip measurement results are sketched as follows:
The first technique is a monotonic capacitor switching procedure. Compared to converters that use the conventional procedure, the average switching energy and total sampling capacitance are reduced by about 81.3% and 50%, respectively. A 10-bit, 50-MS/s SAR ADC with the proposed monotonic capacitor switching procedure is implemented in a 0.13-µm 1P8M CMOS technology. The prototype ADC consumes 0.92 mW from a 1.2-V supply, and the effective number of bit (ENOB) is 8.48 bits. The resulting figure of merit (FOM) is 52 fJ/conversion-step. However, the signal-dependent offset caused by the variation of the input common-mode voltage degrades the linearity of ADC. We proposed an improved comparator design to avoid the linearity degradation. Besides, to avoid a clock signal with frequency higher than sampling rate, we used an asynchronous control circuit to internally generate the necessary control signals. The revised prototype is also implemented in a 0.13-µm 1P8M CMOS technology. It consumes 0.826 mW from a 1.2-V supply and achieves an ENOB of 9.18 bits. The resultant FOM is 29 fJ/conversion-step.
The second technique is a binary-scaled error compensation method. In a medium-to-high resolution case, the DAC settling issue limits the operating speed of a SAR ADC, because it is not easy for the capacitive DAC to stabilize in a short time interval. We insert extra binary-scaled compensation bits to compensate for the DAC settling error. Accordingly, the comparator can perform comparison before the DAC is completely settled, resulting in improved operating speed. A 10-bit, 100-MS/s SAR ADC using the binary-scaled error compensation method is implemented in a 65-nm 1P6M CMOS technology. The prototype consumes 1.13 mW from a 1.2-V supply and achieves an ENOB of 9.51 bits. The resultant FOM is 15.5 fJ/conversion-step.
The third technique is a predictive capacitor switching method that uses a predictive circuit to avoid unnecessary switching in a DAC network. This method saves 40~45% switching energy. Combined with the first technique, the average switching energy is reduced by about 90% than the conventional one. In addition, this technique improves static and dynamic performance of a SAR ADC. A 10-bit, 10-MS/s SAR ADC using this method is implemented in a 0.18-µm 1P6M CMOS technology. The prototype consumes 98 µW from a 1-V supply and achieves an excellent ENOB of 9.83 bits. The resultant FOM is only 11 fJ/conversion-step.
[1] J. Craninckx and G. Plas, “A 65fJ/Conversion-Step 0-to-50MS/s 0-to-0.7mW 9b Charge-sharing SAR ADC in 90nm Digital CMOS,” IEEE ISSCC Dig. Tech. Papers, Feb. 2007, pp. 246-247.
[2] V. Giannini, P. Nuzzo, V. Chironi, A. Baschirotto, G. Plas, and J. Craninckx “An 820µW 9b 40MS/s Noise-Tolerant Dynamic-SAR ADC in 90nm Digital CMOS,” IEEE ISSCC Dig. Tech. Papers, Feb. 2008, pp. 238-239.
[3] F. Kuttner, “A 1.2-V 10-b 20-Msample/s nonbinary successive approximation ADC in 0.13µm CMOS,” IEEE ISSCC. Dig. Tech. Papers, Feb. 2002, pp. 176–177.
[4] W. Liu, P. Huang, and Y. Chiu, “A 12b 22.5/45MS/s 3.0mW 0.059mm2 CMOS SAR ADC Achieving Over 90dB SFDR,” IEEE ISSCC Dig. Tech. Papers, Feb. 2010, pp. 380-381.
[5] W. Liu, Y. Chang, S. K. Hsien, B. W. Chen, Y. P. Lee, W. T. Chen, T. Y. Yang, G. K. Ma, and Y. Chiu, “A 600MS/s 30mW 0.13µm CMOS ADC array achieving over 60dB SFDR with adaptive digital equalization,” IEEE ISSCC Dig. Tech. Papers, Feb. 2009, pp. 82-83.
[6] Simon M. Louwsma, Ed J.M. van Tuiji, et al., “A 1.35 GS/s, 10b, 175 mW Time-Interleaved AD Converter in 0.13 µm CMOS,” IEEE Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2007, pp. 62-63.
[7] B. P. Ginsburg and A. P. Chandrakasan, “Dual Time-Interleaved Successive Approximation Register ADCs for an Ultra-Wideband Receiver,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 247-257, Feb. 2007.
[8] Z. Cao, S. Yan, and Y. Li, “A 32mW 1.25GS/s 6b 2b/step SAR ADC in 0.13µm CMOS,” IEEE ISSCC Dig. Tech. Papers, Feb. 2008, pp. 542-543.
[9] D. Draxelmayr, “A 6b 600 MHz 10 mW ADC array in digital 90 nm CMOS,” IEEE ISSCC Dig. Tech. Papers, Feb. 2004, pp. 264-265.
[10] E. Alpman, H. Lakdawala, L.R. Carley, and K.Soumyanath, “A 1.1V 50mW 2.5GS/s 7b Time-Interleaved C-2C SAR ADC in 45nm LP digital CMOS,” IEEE ISSCC Dig. Tech. Papers, Feb. 2009, pp. 76-77.
[11] S. Chen and R. Brodersen, “A 6b 600MS/s 5.3mW Asynchronous ADC in 0.13µm CMOS.” IEEE ISSCC Dig. Tech. Papers, pp 574-575, Feb. 2006.
[12] B. P. Ginsburg and A. P. Chandrakasan, “500-MS/s 5-bit ADC in 65-nm CMOS with split capacitor array DAC,” IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 739-747, April. 2007.
[13] M. Furuta, M. Nozawa, and T. Itakura, “A 0.06mm2 8.9b ENOB 40MS/s Pipelined SAR ADC in 65nm CMOS,” IEEE ISSCC Dig. Tech. Papers, Feb. 2010, pp. 382-383.
[14] M. Yoshioka, K. Ishikawa, T. Takayama, and S. Tsukamoto, “A 10b 50MS/s 820μW SAR ADC with On-Chip Digital Calibration,” IEEE ISSCC Dig. Tech. Papers, Feb. 2010, pp. 384-385.
[15] P. Harpe, C. Zhou, X. Wang, G. Dolmans, and H. d. Groot, “A 30fJ/Conversion-Step 8b 0-to-10MS/s Asynchronous SAR ADC in 90nm CMOS,” IEEE ISSCC Dig. Tech. Papers, Feb. 2010, pp. 388-389.
[16] Y. K. Chang, C. S. Wang, and C. K. Wang, “A 8-bit 500KS/s low power SAR ADC for bio-medical application,” IEEE A-SSCC Dig. Tech. Papers, Nov. 2007, pp. 228-231.
[17] S. Gambini and J. Rabaey, “Low-power successive approximation converter with 0.5-V supply in 90nm CMOS,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2348-2356, Nov. 2007.
[18] C. C. Liu, S. J. Chang, G. Y. Huang, and Y. Z. Lin, “A 0.92mW 10-bit 50-MS/s SAR ADC in 0.13µm CMOS process,” IEEE Symp. on VLSI Circuits Dig. Tech. Papers, Jun. 2009, pp. 236-237.
[19] K. Cornelissens and M. Steyaert, “A novel bootstrapped switch design, applied in a 400MHz clocked ADC,” in Proc. IEEE Int. Electronics, Circuits and Systems, Conf., Dec. 2006, pp. 1156-1159.
[20] A. M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 34, no.5, pp. 599-606, May 1999.
[21] J. Doernberg, H. S. Lee, and D. A. Hodges, “Full-speed testing of A/D converters,” IEEE J. Solid-State Circuits, vol. SC-19, pp. 820-827, Dec. 1984.
[22] J. Hu, N. Dolev, and B. Murmann, “A 9.4-bit, 50-MS/s, 1.44-mW pipelined ADC using dynamic residue amplification,” IEEE Symp. on VLSI Circuits Dig. Tech. Papers, Jun. 2008, pp. 216-217.
[23] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC with a Monotonic Capacitor Switching Procedure,” IEEE J. Solid-State Circuits, vol 45, no. 4, pp. 731-740, Apr. 2010.
[24] S. Jiang, M. A. Do, K. S. Yeo, and W. M. Lim, “An 8-bit 200-MSample/s pipelined ADC with mixed-mode front-end S/H circuit,” IEEE Trans. Circuits and System I, vol. 55, no. 6, pp. 1430-1440, Jul. 2008.
[25] M. Waltari and K. A. I. Halonen., “1-V 9-Bit Pipelined Switched-Opamp ADC,” IEEE J. Solid-State Circuits, vol. 36, no. 1, pp. 129-134, Jan. 2001.
[26] C.-C. Liu, Y.-T. Huang, G.-Y. Huang, S.-J. Chang, C.-M. Huang, and C.-H. Huang, “A 6-bit 220-MS/s Time-Interleaving SAR ADC in 0.18-µm Digital CMOS Process,” IEEE International Symp. on VLSI Design, Automation & Test, Apr. 2009, pp.215-218.
[27] S. Limotyrakis, S. D. Kulchycki, D. Su, and B. A. Wooley, “A 150MS/s 8 b 71 mW time-interleaved ADC in 0.18µm CMOS,” IEEE ISSCC Dig. Tech. Papers, Feb. 2004, pp. 258-259.
[28] C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, C.-M. Huang, and C.-H. Huang, “A 10b 100MS/s 1.13mW SAR ADC with Binary Scaled Error Compensation,” IEEE ISSCC Dig. Tech. Papers, Feb. 2010, pp. 386-387.
[29] Y. Chen; S. Tsukamoto, and T. Kuroda, “A 9b 100MS/s 1.46mW SAR ADC in 65nm CMOS,” IEEE A-SSCC Dig. Tech. Papers, Nov. 2009, pp. 145-148.
[30] M. Yoshioka, M. Kudo, T. Mori, and S. Tsukamoto, “A 0.8V 10b 80MS/s 6.5mW Pipelined ADC with Regulated Overdrive Voltage Biasing,” IEEE ISSCC Dig. Tech. Papers, Feb. 2007, pp. 452-453
[31] M. Boulemnakher, E. Andre, J. Roux, and F. Paillardet, “A 1.2V 4.5mW 10b 100MS/s Pipeline ADC in a 65nm CMOS,” IEEE ISSCC Dig. Tech. Papers, Feb. 2008, pp. 250-251
[32] C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, and C.-M. Huang, “A 1V 11fJ/Conversion-Step 10bit 10MS/s Asynchronous SAR ADC in 0.18µm CMOS,” IEEE Symp. on VLSI Circuits Dig. Tech. Papers, Jun. 2010, pp. 241-242
[33] J. J. Kang and M. P. Flynn, “A 12b 11MS/s successive approximation ADC with two comparators in 0.13µm CMOS,” IEEE Symp. on VLSI Circuits Dig. Tech. Papers, Jun. 2009, pp. 240-241.
[34] W. Y. Pang, C. S. Wang, Y. K. Chang, N. K. Chou, and C. K. Wang, “A 10-bit 500-KS/s Low Power SAR ADC with Splitting Comparator for Bio-Medical Applications,” IEEE A-SSCC Dig. Tech. Papers, Nov. 2009, pp. 149-152.
[35] Y. Chen, X. Zhu, H. Tamura, M. Kibune, Y. Tomita, T. Hamada, M. Yoshioka, K. Ishikawa, T. Takayama, J. Ogawa, S. Tsukamoto, and T. Kuroda, “Split Capacitor DAC Mismatch Calibration in Successive Approximation ADC,” IEEE Custom Integrated Circuits Conf., Sep. 2009, pp. 279-282.