簡易檢索 / 詳目顯示

研究生: 林子為
Lin, Zih-Wei
論文名稱: 一種適用於非方陣非極小相位離散時間系統的創新強健比例積分最佳化線性二次狀態估測追蹤器
A new robust PI-based optimal linear quadratic state-estimate tracker for discrete-time non-square non-minimum phase systems
指導教授: 蔡聖鴻
Tsai, Sheng-Hong Jason
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 47
中文關鍵詞: 最佳化線性二次估測頻域塑形比例積分微分濾波器非極小相位系統控自零點
外文關鍵詞: Optimal linear quadratic estimator, frequency shaping, PID filter, non-minimum phase system, control zeros
相關次數: 點閱:136下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,基於比例積分微分濾波器頻域塑形法提出一種新的比例積分的強健最佳化線性二次狀態估測追蹤器,為了解決非方形非極小相位的多變數系統,在本文也中提出了一種創新且相對應於追蹤器設計方法的基於比例積分微分濾波器塑形方法,並結合了廣義線性二次離散追蹤器的基於比例積分的強健最佳化線性二次狀態估測器。因此即使輸入是在某個時間點有著極大變化量的任意軌跡,本文中所提出的狀態估測追蹤器和狀態估測器也能夠很有效的達到類極小相位的追蹤效果。

    In this thesis, a new robust proportional-integral (PI)-based optimal linear quadratic state-estimate tracker, derived using a proportional-integral-derivative (PID) filter-based frequency-domain shaping approach, has been presented. In order to deal with non-square non-minimum phase (NMP) multi-input-multi-output (MIMO) system, based on the PID filter-shaped approach, we present the new proportional-integral (PI)-based optimal linear quadratic state estimator, which is dual to the tracker design with the generalized linear quadratic digital tracker (LQDT). Therefore, both state-estimate tracker and state estimator are able to achieve satisfactory minimum phase-like tracking performance for arbitrary command inputs with dramatic variations at some isolated time instants.

    摘要 i Abstract ii Acknowledgement iii List of Contents iv List of Figures vi Chapter 1. Introduction 1 2. Optimal PI State-Feedback LQDT for Non-Square Non-Minimum Phase Systems: PID Filter-Based Frequency Shaping Approach 6 2.1 Introduction to optimal LQDT for the proper system with known/estimated system disturbances 7 2.2 Design procedure 8 2.2.1 Transform the non-square NMP system to a square minimum phase system 8 2.2.2 Assign some extra target zeros 10 2.2.3 Construct the intermediary augmented plant 12 2.2.4 Formulate the performance index 13 2.2.5 Perform the linear quadratic PI state-feedback tracker design 14 2.2.6 Examine the open-loop frequency response and adjust weights 15 3. New Optimal PI-Based Linear Quadratic Digital Estimators for Non-Minimum Phase Systems PID filter-based frequency shaping approach 16 3.1 Problem description 17 3.2 Design procedure 19 3.2.1 Create a square minimum phase stable observer 19 3.2.2 Assign some extra target zeros 20 3.2.3 Construct the intermediary augmented plant 21 3.2.4 Formulate the performance index 25 3.2.5 Perform the linear quadratic PI state-feedback estimator design 25 3.2.6 Examine the open-loop frequency response and adjust weights 27 3.3 Proportional-plus-integral state-estimate tracker for the non-square and non- minimum phase system 29 3.4 An efficient method to transform the non-square NMP system to a square minimum phase system 31 4. An Illustrative Example 32 4.1 Example 33 4.2 Tracking design 35 4.3 Estimator design 38 4.4 State-estimate tracker design 39 4.5 Test for robustness of the linear quadratic PI state-estimate tracker design 42 5. Conclusion 45 References 46

    [1] Anderson, B.D.O., & Mingori, D.L. (1985). Use of frequency dependence in linear quadratic problems to frequency shape robustness. Journal of Guidance and Control, 8(3), 397–401.
    [2] Anderson, B.D.O., & Moore, J.B. (1989). Optimal Control: Linear Quadratic Methods, NJ: Prentice-Hall.
    [3] Astrom, K.J., Hagander, P., and Sternby, J. (1984). Zeros of sampled systems. Automatica, 20(1), 31-38.
    [4] Chen, Y.M., & Wu, Y.C. (1992). Modified recursive least-squares algorithm for parameter identification. International Journal of Systems Science, 23(2), 187–205.
    [5] Doyle J.C., Francis, B.A., & Tannenbaum, A.R. (1990). Feedback control theory. New York, NY: Macmillan.
    [6] Ebrahimzadeh, F., Tsai, J.S.H., Chung, M.C., Liao, Y.T., Guo, S.M., Shieh, L.S., Wang, L. (2017a). A new generalized optimal linear quadratic tracker with universal applications-Part 2: Discrete-time systems. International Journal of Systems Science, 48 (2), 397–416.
    [7] Ebrahimzadeh, F., Tsai, J.S.H., Liao, Y.T., Chung, M.C., Guo, S.M., Shieh, L.S., & Wang, L. (2017b). A new generalized optimal linear quadratic tracker with universal applications-Part 1: Continuous-time systems. International Journal of Systems Science, 48 (2), 376–396.
    [8] Emami-Naeini, A., & Dooren, P. V. (1982). Computation of zeros of linear multivariable systems. Automatica, 18(4), 425–430.
    [9] Latawiec, K., Banka, S., & Tokarzewski, J. (2000). Control zeros and non-minimum phase LTI MIMO systems. Annual Reviews in Control, 24(1), 105–112.
    [10] Lewis, F.L. (1992). Applied Optimal Control and Estimation, NJ: Prentice-Hall.
    [11] Lewis, F.L., & Syrmos, V.L. (1995). Optimal Control, NJ: John Wiley & Sons.
    [12] Ray, G., & Rama Rao, P. (1990). On-line identification and control of multivariable discrete-time systems based on a transformed model. International Journal of Systems Science, 21(1), 175–191.
    [13] Tsai, J.S.H., Ebrahimzadeh, F., Chung, M.C., Guo, S.M., Shieh, L.S., Tsai, T.J., & Wang, L. (2016). New optimal linear quadratic digital tracker for the discrete-time proper system with an unknown disturbance. International Journal of Computer, Electrical, Automation, Control and Information Engineering, 10(5), 929-935.
    [14] Tsai, J.S.H., Ebrahimzadeh, F., Lin, Y.Y., Guo, S.M., Shieh, L.S., & Juang, Y.T. (2017a). An efficient robust servo design for non-minimum phase discrete-time systems with unknown matched/mismatched input disturbances. Automation, Control and Intelligent Systems, 5(2), 14–28.
    [15] Tsai, J.S.H., Liao, Y.-T., Ebrahimzadeh, F., Lai, S.Y., Su, T.J., Guo, S.M., Shieh, L.S., & Tsai, T. J., (2017b). A new PI optimal linear quadratic state-estimate tracker for continuous-time non-square non-minimum phase systems. International Journal of Systems Science, 48(7), 1438–1459.
    [16] Tsai, J.S.H., Su, T.J., Cheng, J.C., Lin, Y.Y., Giap, V.N., Guo, S.M., Shieh, L.S. (2017c). Robust observer-based optimal linear quadratic tracker for five-degree-of-freedom sampled-data active magnetic bearing system. International Journal of Systems Science (under review).
    [17] Uren, K., & Schoor, G.V. (2011). Predictive PID control of non-minimum phase systems, Advances in PID Control. Valery, D., & Yurkevich (Ed.). Croatia: InTech, Retrieved from http://www. intechopen.com/books/advances-in-pid-control/predictive-pid-control-of-non-minimum-phase-systems
    [18] Wang, L.P. (2009). Model Predictive Control System Design and Implementation Using MATLAB, London: Springer.

    無法下載圖示 校內:2022-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE