| 研究生: |
陳宏哲 Chen, Hong-Jhe |
|---|---|
| 論文名稱: |
利用深度資訊改善移動向量預測之三維視訊壓縮演算法 Improved Motion Vector Prediction Based on Depth Information for 3D Video Coding |
| 指導教授: |
劉濱達
Liu, Bin-Da |
| 共同指導教授: |
楊家輝
Yang, Jar-Ferr |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | H.264/AVC 、深度資訊 、移動向量預測 |
| 外文關鍵詞: | H.264/AVC, depth information, motion vector prediction |
| 相關次數: | 點閱:113 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在研究深度資訊應用於H.264/AVC視訊標準編碼之影響,以期提高移動向量預測(Motion vector Prediction)的準確度。在傳統移動向量預測演算法中,編碼區塊的預測移動向量是利用鄰近區塊的移動向量取中間值得到。如果鄰近區塊的移動向量不夠可靠,應該避免拿來做移動向量預測。本論文利用深度資訊來協助判斷所參考區塊的移動向量是否可靠,根據變異係數(Coefficient of Variation)來計算鄰近區塊在深度資訊中的變化,當變異係數的值大於臨界值時,則此區塊的移動向量就比較不可靠。採用更可靠的移動向量預測方法,將可以提升編碼的效能。
模擬結果顯示,本文提出的演算法不管是在針對靜態或是動態的影像都有明顯的效能改善。靜態影像平均省了1.25%的編碼位元,中等移動影像平均省了3.47%的編碼位元,動態影像平均省了7.56%的編碼位元。
This thesis proposes a motion vector prediction algorithm in H.264/AVC that uses the depth information to get more accurate motion vector predictor (MVP) for motion estimation. In conventional video coding, the MVP of the current block is obtained by finding the median of the motion vectors in neighboring blocks. When the motion vectors of some neighboring blocks are not reliable, they shouldn’t be used to find the MVP. In this thesis, the reliability of the motion vectors of neighboring blocks is determined by the depth information of those blocks. The coefficient of variation (CV) for the depth values in each neighboring block is calculated. The motion vectors of the neighboring blocks that CV values are larger than threshold are considered as unreliable. Since a more accurate MVP is determined by the proposed algorithm, the coding performance is improved.
Simulation results show that the proposed algorithm greatly improves the coding performances. The bit rate can be saved up to 1.25% for sequences with little motion, 3.47% for sequences with medium motion, and 7.56% for sequences with high motion.
References
[1] “Introduction to 3D Video,” ISO/IEC JTC1/SC29/WG11 N9784, May 2008.
[2] “Application and Requirements on 3D Video Coding,” ISO/IEC JTC1/SC29/WG11 N12035, Mar. 2011.
[3] Coding of Moving Pictures and Associated Audio for Digital Storage Media at up to about 1.5 Mbit/s – Part2: Video, ISO/IEC 11172, 1993.
[4] Information Technology – Generic Coding of Moving Pictures and Associated Audio Information: Video, ISO/IEC 13818-2 and ITU-T Rec. H.262, 1996.
[5] Information Technology – Coding of Audio-Visual Objects – Part2: Visual, ISO/IEC 14496-2, 1999.
[6] Video Codec for Audiovisual Services at px64 kbits/s, ITU-T Rec. H.261 v1, 1990.
[7] Video Coding for Low Bit Rate Communication, ITU-T Rec. H.263, 1998.
[8] “Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification (ITU-T Rec.H.264 | ISO/IEC 14496-10 AVC),” in Joint Video Team, Mar. 2003, Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T G. Sullivan and T. Wiegand, “Rate-distortion optimization for video compression,” IEEE Signal Process. Mag., vol.15, pp. 74-90, Nov. 1998.VCEG, JVT-G050.
[9] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. K. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, pp. 560-576, July 2003.
[10] I. E. G. Richardson, H.264 and MPEG-4 Video Compression: Video Coding for Next-Generation Multimedia. Chichester, UK: John Wiley & Sons, 2003.
[11] Joint Video Team, Reference Software JM 15.1. [Online]. Available: http://iphome.hhi.de/suehring/tml/download/old_jm/
[12] G. Sullivan and T. Wiegand, “Rate-distortion optimization for video compression,” IEEE Signal Process. Mag., vol.15, pp. 74-90, Nov. 1998.
[13] J. Seo, D. Park, H. C. Wey, S. Lee, and K. Sohn, “Motion information sharing mode for depth video coding,” in Proc. IEEE 3DTV, June 2010, pp. 1-4.
[14] C. T. E. R. Hewage, S. Worrall, S. Dogan, and A. M. Kondoz, “Frame concealment algorithm for stereoscopic video using motion vector sharing,” in Proc. IEEE ICME, June 2008, pp. 485-488.
[15] S. Grewatsch and E. Miiller, “Sharing of motion vectors in 3d video coding,” in Proc. IEEE ICIP, Oct. 2004, pp. 3271-3274.
[16] Q. Zhang, P. An, Y. Zhang, Q. Zhang, and Z. Zhang, “Reduced resolution depth compression for multiview video plus depth coding,” in Proc IEEE ICSP, Oct. 2010, pp. 1145-1148.
[17] B. T. Oh, H. C. Wey, and D. S. Park, “Depth map coding based on color motion information,” in Proc SPIE Vis. Inf. Process. Commun. II, Jan. 2011, pp. 78820O-78820O-9.
[18] M. K. Kang, C. Lee, J. Y. Lee, and Y. S. Ho, “Adaptive geometry-based intra prediction for depth video coding,” in Proc IEEE ICME, July 2010, pp. 1230-1235.
[19] P. Ndjiki-Nya, M. Koppel, D. Doshkov, H. Lakshman, P. Merkle, K. Muller, and T. Wiegand, “Depth image-based rendering with advanced texture synthesis for 3-D video,” IEEE Trans. Multimedia, vol. 13, pp. 453-465, June 2011.
[20] Z. Ni, D. Tian, S. Bhagavathy, J. Llach, and B. S. Manjunath, “Improving the quality of depth image based rendering for 3D video systems,” in Proc IEEE ICIP, Nov. 2009, pp. 513-516.
[21] Q. H. Nguyen, M. N. Do, and S. J. Patel, “Depth image-based rendering with low resolution depth,” in Proc IEEE ICIP, Nov. 2009, pp. 553-556.
[22] L. Zhang and W. J. Tam, “Stereoscopic image generation based on depth images for 3D TV,” IEEE Trans. Broadcast., vol. 51, pp. 191-199, June 2005.
[23] Z. Liang, W. J. Tam, and D. Wang, “Stereoscopic image generation based on depth images,” in Proc IEEE ICIP, Oct. 2004, pp. 2993-2996.
[24] C. Hwang, S. Zhuang, and S. H. Lai, “Efficient intra mode selection using image structure tensor for H.264/AVC,” in Proc IEEE ICIP, Sept. 2007, pp. 289-292.
[25] F. Pan, X. Lin, S. Rahardja, K. P. Lim, Z. G. Li, D. Wu, and S. Wu, “Fast mode decision algorithm for intra prediction in H.264/AVC video coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 15, pp. 813-822, July 2005.
[26] F. Pan, X. Lin, S. Rahardja, K. P. Lim, and Z. G. Li, “A directional field based fast intra mode decision algorithm for H.264 video coding,” in Proc IEEE ICME, June 2004, pp. 1147-1150.
[27] D. Wu, F. Pan, K. P. Lim, S. Wu, Z. G. Li, X. Lin, S. Rahardja, and C. C. Ko, “Fast intermode decision in H.264/AVC video coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 15, pp. 953-958, July 2005.
[28] D. Wu, S. Wu, K. P. Lim, F. Pan, Z. G. Li, and X. Lin, “Block inter mode decision for fast encoding of H.264,” in Proc IEEE ICASSP, May 2004, pp. 181-184.
[29] A. C. W. Yu, G. R. Martin, and H. Park, “Fast inter-mode selection in the H.264/AVC standard using a hierarchical decision process,” IEEE Trans. Circuits Syst. Video Technol., vol. 18, pp. 186-195, Feb. 2008.
[30] Y. H. Huang, T. S. Ou, and H. H. Chen, “Fast decision of block size, prediction mode, and intra block for H.264 intra prediction,” IEEE Trans. Circuits Syst. Video Technol., vol. 20, pp. 1122-1132, Aug. 2010.
[31] G. Bjøntegaard, “Calculation of average PSNR differences between RD-curves,” ITU-T Q.6/16, Document VCEG-M33, Mar. 2001.