| 研究生: |
林家名 Lin, Jia-Ming |
|---|---|
| 論文名稱: |
以刮刀塗佈法開發大面積鈣鈦礦太陽能電池 Development of large-area Perovskite solar cell by blade coating |
| 指導教授: |
施權峰
Shih, Chuan-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 有機鈣鈦礦太陽能電池 、大面積 、刮刀塗佈法 、摻雜Tween60及DMSO 、TiO2顆粒尺寸 、刮刀製程間隙 、FTO佈金線 |
| 外文關鍵詞: | Blade coating, Large area, Surfactant, DMSO, TiO2, Au line |
| 相關次數: | 點閱:102 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以刮刀塗佈法開發大面積鈣鈦礦太陽能電池,第一個部份(4-1)為優化前驅溶液並提升均勻度,前驅溶液的組成是影響薄膜均勻度與品質的關鍵,分析不同劑量的聚山梨酸酯60(Tween60,化學式為 C64H126O26)與二甲基亞碸(DMSO,化學式為(CH3)2SO)對甲基氨基碘化鉛(MAPbI3,MA化學式為CH3NH3)薄膜之影響。在溶液中摻雜330 ppm Tween60與1 M DMSO,其薄膜有著110優選取向之結晶、大晶粒尺寸、高均勻度等性質,並且在有效面積0.1cm2達到了10.3%的效率。
第二部分(4-2)為優化刮刀製程間隙和二氧化鈦(TiO2)顆粒尺寸並提升效率,此章節透過調整刮刀製程間隙與TiO2之顆粒尺寸,使MAPbI3厚度達到300 nm,且更好的填充在TiO2上,改善電性的遲滯現象與提升FF值,實驗結果以300 μm的刮刀製程間隙、30 nm的TiO2,將效率從10.3%提升到14.8%。
提升均勻性與效率之後,第三個部分(4-3)探討大面積鈣鈦礦太陽能電池之製程,隨著有效面積的提升,元件的陰極FTO因為傳輸距離上升而導致電阻過大,透過在FTO上佈金線,大幅的降低FTO之電阻,使得載子能夠順利的傳輸到接收端,最終在2.4 cm2的有效面積下(較小面積的0.1cm2,提升了24倍),達到了11.9%的效率。
This thesis reports the development of large-area perovskite solar cells by a blade coating process. The first part is to optimize the precursor solution and improve the thin-film uniformity. The composition of the precursor solution is the key to affect the uniformity and quality of the perovskite thin film. Analyzed the effects of different amounts of Tween60 (C64H126O26) and dimethylhydrazine ((CH3)2SO) on methylammonium lead halide (MAPbI3, MA=CH3NH3) thin films. The solution was doped with 330 ppm Tween60 and 1 M DMSO, and the film showed 110 preferred orientation, large grain size, high uniformity, and the PCE achieved 10.3% at an effective area of 0.1 cm2.
The second part is to optimize the blading process gap and particle size of titanium dioxide (TiO2) that improved the efficiency. The electrical hysteresis properties and the FF was improved by adjusting the gap during blade casting, the particle size of TiO2, the MAPbI3 thickness to achieve ~300 nm, and the filling on TiO2. . Finally, the PCE was improved from 10.3% to 14.8% by using 300 μm as the gap during blading process and an 30-nm-thick TiO2.
The third part discusses the process of large-area perovskite solar cells. The resistance was markedly increased by increasing the effective area, because the distance between the FTO electrodes is very large that increases the transmission distance of carriers. The resistance of the FTO was reduced by evaporating gold wires so that the carrier can be effectively transmitted to the receiving electrode. The PCE achieved 11.9% by increasing the active area from 0.1cm2 to 2.4 cm2 .
1. Kim, H.S., A. Hagfeldt, and N.G. Park, Morphological and compositional progress in halide perovskite solar cells. Chem Commun (Camb), 2019. 55(9): p. 1192-1200.
2. Green, M.A., The path to 25% silicon solar cell efficiency: History of silicon cell evolution. Progress in Photovoltaics: Research and Applications, 2009. 17(3): p. 183-189.
3. Bush, K.A., et al., 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nature Energy, 2017. 2(4).
4. Deng, Y., et al., Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nature Energy, 2018. 3(7): p. 560-566.
5. Yin, J., et al., Growth-Dynamic-Controllable Rapid Crystallization Boosts the Perovskite Photovoltaics' Robust Preparation: From Blade Coating to Painting. ACS Appl Mater Interfaces, 2018. 10(27): p. 23103-23111.
6. Murali, B., et al., Robust and air-stable sandwiched organo-lead halide perovskites for photodetector applications. Journal of Materials Chemistry C, 2016. 4(13): p. 2545-2552.
7. Shao, J., et al., Pore Size Dependent Hysteresis Elimination in Perovskite Solar Cells Based on Highly Porous TiO2 Films with Widely Tunable Pores of 15–34 nm. Chemistry of Materials, 2016. 28(19): p. 7134-7144.
8. Galagan, Y., et al., Towards the scaling up of perovskite solar cells and modules. Journal of Materials Chemistry A, 2016. 4(15): p. 5700-5705.
9. Meng, Z., et al., Investigation of Al2O3 and ZrO2 spacer layers for fully printable and hole-conductor-free mesoscopic perovskite solar cells. Applied Surface Science, 2018. 430: p. 632-638.
10. Kim, H.S. and N.G. Park, Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. J Phys Chem Lett, 2014. 5(17): p. 2927-34.
11. Selvaratnam, B. and R.T. Koodali, TiO2-MgO mixed oxide nanomaterials for solar energy conversion. Catalysis Today, 2018. 300: p. 39-49.
12. Gunnlaugsson, H.P., et al., Defect annealing in Mn/Fe-implanted TiO2(rutile). Journal of Physics D: Applied Physics, 2014. 47(6).
13. Xing, G., et al., Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3Pb3. Science, 2013. 342(6156): p. 344.
14. Liu, M., M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013. 501: p. 395.
15. Yoo, E., et al., Bifunctional resistive switching behavior in an organolead halide perovskite based Ag/CH3NH3PbI3-xClx/FTO structure. Journal of Materials Chemistry C, 2016. 4(33): p. 7824-7830.
16. Tan, Z.-K., et al., Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014. 9: p. 687.
17. Feichi, Z., et al., Low-Voltage, Optoelectronic CH3NH3PbI3−xClx Memory with Integrated Sensing and Logic Operations. Advanced Functional Materials, 2018. 28(15): p. 1800080.
18. Wang, Y., et al., Improved performance of CH3NH3PbI3 based photodetector with a MoO3 interface layer. Organic Electronics, 2017. 49: p. 355-359.
19. Noh, J.H., et al., Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material. Journal of Materials Chemistry A, 2013. 1(38).
20. Gratia, P., et al., A Methoxydiphenylamine-Substituted Carbazole Twin Derivative: An Efficient Hole-Transporting Material for Perovskite Solar Cells. Angew Chem Int Ed Engl, 2015. 54(39): p. 11409-13.
21. Ye, F., et al., Soft-cover deposition of scaling-up uniform perovskite thin films for high cost-performance solar cells. Energy & Environmental Science, 2016. 9(7): p. 2295-2301.
22. Ye, F., et al., Low-Temperature Soft-Cover Deposition of Uniform Large-Scale Perovskite Films for High-Performance Solar Cells. Adv Mater, 2017. 29(35).
23. Chen, H., et al., A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature, 2017. 550(7674): p. 92-95.
24. Habibi, M., M.-R. Ahmadian-Yazdi, and M. Eslamian, Optimization of spray coating for the fabrication of sequentially deposited planar perovskite solar cells. Journal of Photonics for Energy, 2017. 7(2).
25. Barrows, A.T., et al., Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ. Sci., 2014. 7(9): p. 2944-2950.
26. Heo, J.H., et al., Highly efficient CH3NH3PbI3−xClx mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating. Journal of Materials Chemistry A, 2016. 4(45): p. 17636-17642.
27. Uličná, S., et al., Scalable Deposition of High-Efficiency Perovskite Solar Cells by Spray-Coating. ACS Applied Energy Materials, 2018. 1(5): p. 1853-1857.
28. Bishop, J.E., T.J. Routledge, and D.G. Lidzey, Advances in Spray-Cast Perovskite Solar Cells. J Phys Chem Lett, 2018. 9(8): p. 1977-1984.
29. Zheng, Y., et al., Spray coating of the PCBM electron transport layer significantly improves the efficiency of p-i-n planar perovskite solar cells. Nanoscale, 2018. 10(24): p. 11342-11348.
30. Hwang, K., et al., Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv Mater, 2015. 27(7): p. 1241-7.
31. Bu, T., et al., Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nat Commun, 2018. 9(1): p. 4609.
32. Qin, T., et al., Amorphous hole-transporting layer in slot-die coated perovskite solar cells. Nano Energy, 2017. 31: p. 210-217.
33. Kim, J.-E., et al., Slot die coated planar perovskite solar cells via blowing and heating assisted one step deposition. Solar Energy Materials and Solar Cells, 2018. 179: p. 80-86.
34. Deng, Y., et al., Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy & Environmental Science, 2015. 8(5): p. 1544-1550.
35. Razza, S., et al., Perovskite solar cells and large area modules (100 cm 2 ) based on an air flow-assisted PbI 2 blade coating deposition process. Journal of Power Sources, 2015. 277: p. 286-291.
36. Tang, S., et al., Composition Engineering in Doctor-Blading of Perovskite Solar Cells. Advanced Energy Materials, 2017. 7(18).
37. Zhong, Y., et al., Blade-Coated Hybrid Perovskite Solar Cells with Efficiency > 17%: An In Situ Investigation. ACS Energy Letters, 2018. 3(5): p. 1078-1085.
38. Li, C., et al., Monoammonium Porphyrin for Blade-Coating Stable Large-Area Perovskite Solar Cells with >18% Efficiency. J Am Chem Soc, 2019. 141(15): p. 6345-6351.
39. Mallajosyula, A.T., et al., Large-area hysteresis-free perovskite solar cells via temperature controlled doctor blading under ambient environment. Applied Materials Today, 2016. 3: p. 96-102.
40. Kim, J.H., et al., Enhanced Environmental Stability of Planar Heterojunction Perovskite Solar Cells Based on Blade-Coating. Advanced Energy Materials, 2015. 5(4).
41. Yang, M., et al., Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nature Energy, 2017. 2(5).
42. Zhang, B., et al., Carrier Transport in CH3NH3PbI3Films with Different Thickness for Perovskite Solar Cells. Advanced Materials Interfaces, 2016. 3(17).
43. Baikie, T., et al., Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. Journal of Materials Chemistry A, 2013. 1(18).
44. Yin, W.-J., et al., Halide perovskite materials for solar cells: a theoretical review. Journal of Materials Chemistry A, 2015. 3(17): p. 8926-8942.
45. Zhang, H., et al., Origin of photoactivity in graphitic carbon nitride and strategies for enhancement of photocatalytic efficiency: insights from first-principles computations. Phys Chem Chem Phys, 2015. 17(9): p. 6280-8.
46. Abdulsalam, H., G. Babaji, and H. Tela Abba, The Effect of Temperature and Active layer thickness on the Performance of CH3NH3PbI3 Perovskite Solar Cell: A Numerical Simulation approach. 2018.