簡易檢索 / 詳目顯示

研究生: 林家名
Lin, Jia-Ming
論文名稱: 以刮刀塗佈法開發大面積鈣鈦礦太陽能電池
Development of large-area Perovskite solar cell by blade coating
指導教授: 施權峰
Shih, Chuan-Feng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 59
中文關鍵詞: 有機鈣鈦礦太陽能電池大面積刮刀塗佈法摻雜Tween60及DMSOTiO2顆粒尺寸刮刀製程間隙FTO佈金線
外文關鍵詞: Blade coating, Large area, Surfactant, DMSO, TiO2, Au line
相關次數: 點閱:102下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以刮刀塗佈法開發大面積鈣鈦礦太陽能電池,第一個部份(4-1)為優化前驅溶液並提升均勻度,前驅溶液的組成是影響薄膜均勻度與品質的關鍵,分析不同劑量的聚山梨酸酯60(Tween60,化學式為 C64H126O26)與二甲基亞碸(DMSO,化學式為(CH3)2SO)對甲基氨基碘化鉛(MAPbI3,MA化學式為CH3NH3)薄膜之影響。在溶液中摻雜330 ppm Tween60與1 M DMSO,其薄膜有著110優選取向之結晶、大晶粒尺寸、高均勻度等性質,並且在有效面積0.1cm2達到了10.3%的效率。
    第二部分(4-2)為優化刮刀製程間隙和二氧化鈦(TiO2)顆粒尺寸並提升效率,此章節透過調整刮刀製程間隙與TiO2之顆粒尺寸,使MAPbI3厚度達到300 nm,且更好的填充在TiO2上,改善電性的遲滯現象與提升FF值,實驗結果以300 μm的刮刀製程間隙、30 nm的TiO2,將效率從10.3%提升到14.8%。
    提升均勻性與效率之後,第三個部分(4-3)探討大面積鈣鈦礦太陽能電池之製程,隨著有效面積的提升,元件的陰極FTO因為傳輸距離上升而導致電阻過大,透過在FTO上佈金線,大幅的降低FTO之電阻,使得載子能夠順利的傳輸到接收端,最終在2.4 cm2的有效面積下(較小面積的0.1cm2,提升了24倍),達到了11.9%的效率。

    This thesis reports the development of large-area perovskite solar cells by a blade coating process. The first part is to optimize the precursor solution and improve the thin-film uniformity. The composition of the precursor solution is the key to affect the uniformity and quality of the perovskite thin film. Analyzed the effects of different amounts of Tween60 (C64H126O26) and dimethylhydrazine ((CH3)2SO) on methylammonium lead halide (MAPbI3, MA=CH3NH3) thin films. The solution was doped with 330 ppm Tween60 and 1 M DMSO, and the film showed 110 preferred orientation, large grain size, high uniformity, and the PCE achieved 10.3% at an effective area of 0.1 cm2.
    The second part is to optimize the blading process gap and particle size of titanium dioxide (TiO2) that improved the efficiency. The electrical hysteresis properties and the FF was improved by adjusting the gap during blade casting, the particle size of TiO2, the MAPbI3 thickness to achieve ~300 nm, and the filling on TiO2. . Finally, the PCE was improved from 10.3% to 14.8% by using 300 μm as the gap during blading process and an 30-nm-thick TiO2.
    The third part discusses the process of large-area perovskite solar cells. The resistance was markedly increased by increasing the effective area, because the distance between the FTO electrodes is very large that increases the transmission distance of carriers. The resistance of the FTO was reduced by evaporating gold wires so that the carrier can be effectively transmitted to the receiving electrode. The PCE achieved 11.9% by increasing the active area from 0.1cm2 to 2.4 cm2 .

    摘要 I Extended Abstract II 目錄 XVIII 圖目錄 XXI 表目錄 XXV 第一章 緒論 1 1-1 前言 1 1-2 研究動機 3 1-3 鈣鈦礦元件之材料介紹 3 1-3-1 陰極-FTO 3 1-3-2 電子傳輸層-緻密二氧化鈦層(Compact-TiO2) 4 1-3-3 電子傳輸層-孔洞二氧化鈦層(Mesoporous-TiO2) 4 1-3-4 主動層-有機無機鈣鈦礦(CH3NH3PbI3) 6 1-3-5 電洞傳輸層-Spiro-OmeTAD 7 1-3-6 陽極-金(Au) 7 1-4 摻雜材料的特性 8 1-4-1 Tween60 8 1-4-2 二甲基亞碸(DMSO) 8 第二章 文獻回顧與理論基礎 10 2-1大面積鈣鈦礦太陽能電池之製程 10 2-1-1 軟覆蓋沉積法(Soft-cover deposition) 10 2-1-2 噴塗法(Spray coating) 10 2-1-3 精密式狹縫塗佈法(Slot die) 11 2-1-4 刮刀塗佈法(Doctor blade) 12 2-2 鈣鈦礦太陽能電池之工作原理 15 2-3鈣鈦礦太陽能電池之元件特性分析 15 2-3-1短路電流密度(Jsc) 15 2-3-2開路電壓(Voc) 16 2-3-3填充因子(Fill Factor) 16 2-3-4光電轉換效率(PCE) 16 2-3-5串聯電阻(Rs) 17 2-3-6並聯電阻(Rsh) 17 第三章 鈣鈦礦太陽能電池的製程實驗步驟與儀器量測 18 3-1 鈣鈦礦太陽能電池元件之製程 18 3-1-1前驅溶液的配置(最佳參數) 18 3-1-2鋅粉蝕刻及清洗基板 18 3-1-3元件的製程 19 3-2 量測儀器介紹 22 3-2-1太陽光模擬器 22 3-2-2 QE-R量子效率量測儀 22 3-2-3高解析掃描式電子顯微鏡(SEM) 23 3-2-4多功能 X 光薄膜繞射儀(XRD) 24 3-2-5微拉曼及光激發光光譜儀 25 3-2-6紫外光-可見光-近紅外光分光光譜儀 26 3-2-7原子力顯微鏡(AFM) 27 3-2-8模組化電源量測設備系列 28 第四章 以刮刀塗佈法開發大面積鈣鈦礦太陽能電池 29 4-1優化前驅溶液並提升均勻度 29 4-1-1 刮刀塗佈法簡介 29 4-1-2 在鈣鈦礦前驅溶液中摻雜Tween60 32 4-1-3 在鈣鈦礦前驅溶液中摻雜DMSO 36 4-1-4 結論 40 4-2優化刮刀製程間隙和TiO2顆粒尺寸並提升效率 41 4-2-1 刮刀製程間隙對於元件效率之影響 41 4-2-2 TiO2顆粒尺寸對於元件效率之影響 46 4-2-3 結論 50 4-3優化FTO導電性並提升有效面積 51 4-3-1 優化FTO導電性並提升有效面積 51 4-3-2 結論 54 第五章 結論與未來規劃 55 5-1結論 55 5-2未來規劃 55 參考文獻 56 圖目錄 圖1-1NREL認證太陽能效率世界紀錄[1] 2 圖1-2 TiO2結構圖[12] 6 圖1-3鈣鈦礦結構圖[14] 7 圖1-4 Spiro結構圖[20] 7 圖1-5 Tween60示意圖 8 圖1-6二甲基亞碸示意圖 9 圖2-1軟覆蓋沉積法示意圖[21] 10 圖2-2噴塗法示意圖[24] 11 圖2-3精密式狹縫塗佈法示意圖[33] 12 圖2-4刮刀塗佈法示意圖[4] 13 圖2-5各文獻中刮刀塗佈法之有效面積與效率圖 13 圖2-6太陽能電池工作原理 15 圖2-7J-V特性圖 16 圖2-8太陽能電池等效電路圖 17 圖3-1 溶液配置示意圖 18 圖3-2元件蝕刻示意圖,(a)(c) 小面積蝕刻,(b)(d) 大面積蝕刻 19 圖3-3元件示意圖,(a) 佈金線 (b) 小面積元件 (c) 大面積元件 20 圖3-4鈣鈦礦元件結構與流程圖 21 圖3-5太陽光模擬器示意圖 22 圖3-6 QE-R量子效率量測儀示意圖 22 圖3-7高解析掃描式電子顯微鏡(SEM)示意圖 23 圖3-8多功能 X 光薄膜繞射儀(XRD)示意圖 24 圖3-9微拉曼及光激發光光譜儀示意圖 25 圖3-10紫外光-可見光-近紅外光分光光譜儀示意圖 26 圖3-11原子力顯微鏡(AFM)示意圖 27 圖3-12模組化電源量測設備系列示意圖 28 圖4-1鈣鈦礦刮刀塗佈法製程示意圖 30 圖4-2 145oC下塗佈速度與鈣鈦礦膜厚之變化圖[4] 30 圖4-3刮刀塗佈法溫度對MAPbI3結晶之影響[37] 31 圖4-4摻雜Tween60的鈣鈦礦薄膜形貌,摻雜濃度為 32 圖4-5摻雜Tween60薄膜之螢光光譜掃描,摻雜濃度為 (a) 0 ppm (b) 330 ppm (c) 660 ppm 33 圖4-6摻雜Tween60薄膜之SEM,摻雜濃度為 (a)(d) 0 ppm,(b)(e) 330 ppm,(c)(f) 660 ppm 34 圖4-7摻雜Tween60薄膜之AFM,摻雜濃度為 (a)(d) 0 ppm,(b)(e) 330 ppm,(c)(f) 660 ppm 34 圖4-8摻雜Tween60之效率圖 35 圖4-9摻雜DMSO薄膜之SEM,摻雜濃度為 37 圖4-10摻雜DMSO平均晶粒大小統計圖,摻雜濃度為 37 圖4-11摻雜DMSO薄膜之XRD 38 圖4-12摻雜DMSO薄膜之EQE圖 39 圖4-13摻雜DMSO薄膜之效率圖 39 圖4-14刮刀塗佈法示意圖 42 圖4-15不同TiO2之表面形貌與橫切面 42 圖4-16不同刮刀製程間隙塗佈在C-TiO2上之橫切面 鈣鈦礦厚度為(a) 63 nm (b) 73 nm (c) 65 nm (d) 79 nm 43 圖4-17不同刮刀製程間隙塗佈在15 nm M-TiO2上之橫切面 43 圖4-18不同刮刀製程間隙塗佈在30 nm M-TiO2上之橫切面 44 圖4-19不同的刮刀製程間隙塗佈相異TiO2界面上之厚度圖 45 圖4-20不同的刮刀製程間隙塗佈在相異TiO2界面上之效率圖 45 圖4-21以300 μm的刮刀製程間隙塗佈在M-TiO2上之橫切面 46 圖4-22不同的刮刀製程間隙塗佈在15 nm M-TiO2界面上之JV圖 47 圖4-23不同的刮刀製程間隙塗佈在30 nm M-TiO2界面上之JV圖 47 圖4-24以300 μm的刮刀製程間隙塗佈在15 nm M-TiO2界面上之JV圖 48 圖4-25以300 μm的刮刀製程間隙塗佈在30 nm M-TiO2界面上之JV圖 49 圖4-26以300 μm的刮刀製程間隙塗佈在15、30 nm M-TiO2界面上之EQE圖 49 圖4-27元件示意圖 51 圖4-28 不同有效面積之JV圖 52 圖4-29電流密度分佈圖有效面積分別為(a) 4 cm2(未佈線) (b) 2.4 cm2(已佈線) 53 圖4-30 FTO上有無佈金線之EQE圖 53 表目錄 表2-1刮刀塗佈法重要文獻之簡介 14

    1. Kim, H.S., A. Hagfeldt, and N.G. Park, Morphological and compositional progress in halide perovskite solar cells. Chem Commun (Camb), 2019. 55(9): p. 1192-1200.
    2. Green, M.A., The path to 25% silicon solar cell efficiency: History of silicon cell evolution. Progress in Photovoltaics: Research and Applications, 2009. 17(3): p. 183-189.
    3. Bush, K.A., et al., 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nature Energy, 2017. 2(4).
    4. Deng, Y., et al., Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nature Energy, 2018. 3(7): p. 560-566.
    5. Yin, J., et al., Growth-Dynamic-Controllable Rapid Crystallization Boosts the Perovskite Photovoltaics' Robust Preparation: From Blade Coating to Painting. ACS Appl Mater Interfaces, 2018. 10(27): p. 23103-23111.
    6. Murali, B., et al., Robust and air-stable sandwiched organo-lead halide perovskites for photodetector applications. Journal of Materials Chemistry C, 2016. 4(13): p. 2545-2552.
    7. Shao, J., et al., Pore Size Dependent Hysteresis Elimination in Perovskite Solar Cells Based on Highly Porous TiO2 Films with Widely Tunable Pores of 15–34 nm. Chemistry of Materials, 2016. 28(19): p. 7134-7144.
    8. Galagan, Y., et al., Towards the scaling up of perovskite solar cells and modules. Journal of Materials Chemistry A, 2016. 4(15): p. 5700-5705.
    9. Meng, Z., et al., Investigation of Al2O3 and ZrO2 spacer layers for fully printable and hole-conductor-free mesoscopic perovskite solar cells. Applied Surface Science, 2018. 430: p. 632-638.
    10. Kim, H.S. and N.G. Park, Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. J Phys Chem Lett, 2014. 5(17): p. 2927-34.
    11. Selvaratnam, B. and R.T. Koodali, TiO2-MgO mixed oxide nanomaterials for solar energy conversion. Catalysis Today, 2018. 300: p. 39-49.
    12. Gunnlaugsson, H.P., et al., Defect annealing in Mn/Fe-implanted TiO2(rutile). Journal of Physics D: Applied Physics, 2014. 47(6).
    13. Xing, G., et al., Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3Pb3. Science, 2013. 342(6156): p. 344.
    14. Liu, M., M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013. 501: p. 395.
    15. Yoo, E., et al., Bifunctional resistive switching behavior in an organolead halide perovskite based Ag/CH3NH3PbI3-xClx/FTO structure. Journal of Materials Chemistry C, 2016. 4(33): p. 7824-7830.
    16. Tan, Z.-K., et al., Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014. 9: p. 687.
    17. Feichi, Z., et al., Low-Voltage, Optoelectronic CH3NH3PbI3−xClx Memory with Integrated Sensing and Logic Operations. Advanced Functional Materials, 2018. 28(15): p. 1800080.
    18. Wang, Y., et al., Improved performance of CH3NH3PbI3 based photodetector with a MoO3 interface layer. Organic Electronics, 2017. 49: p. 355-359.
    19. Noh, J.H., et al., Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material. Journal of Materials Chemistry A, 2013. 1(38).
    20. Gratia, P., et al., A Methoxydiphenylamine-Substituted Carbazole Twin Derivative: An Efficient Hole-Transporting Material for Perovskite Solar Cells. Angew Chem Int Ed Engl, 2015. 54(39): p. 11409-13.
    21. Ye, F., et al., Soft-cover deposition of scaling-up uniform perovskite thin films for high cost-performance solar cells. Energy & Environmental Science, 2016. 9(7): p. 2295-2301.
    22. Ye, F., et al., Low-Temperature Soft-Cover Deposition of Uniform Large-Scale Perovskite Films for High-Performance Solar Cells. Adv Mater, 2017. 29(35).
    23. Chen, H., et al., A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature, 2017. 550(7674): p. 92-95.
    24. Habibi, M., M.-R. Ahmadian-Yazdi, and M. Eslamian, Optimization of spray coating for the fabrication of sequentially deposited planar perovskite solar cells. Journal of Photonics for Energy, 2017. 7(2).
    25. Barrows, A.T., et al., Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ. Sci., 2014. 7(9): p. 2944-2950.
    26. Heo, J.H., et al., Highly efficient CH3NH3PbI3−xClx mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating. Journal of Materials Chemistry A, 2016. 4(45): p. 17636-17642.
    27. Uličná, S., et al., Scalable Deposition of High-Efficiency Perovskite Solar Cells by Spray-Coating. ACS Applied Energy Materials, 2018. 1(5): p. 1853-1857.
    28. Bishop, J.E., T.J. Routledge, and D.G. Lidzey, Advances in Spray-Cast Perovskite Solar Cells. J Phys Chem Lett, 2018. 9(8): p. 1977-1984.
    29. Zheng, Y., et al., Spray coating of the PCBM electron transport layer significantly improves the efficiency of p-i-n planar perovskite solar cells. Nanoscale, 2018. 10(24): p. 11342-11348.
    30. Hwang, K., et al., Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv Mater, 2015. 27(7): p. 1241-7.
    31. Bu, T., et al., Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nat Commun, 2018. 9(1): p. 4609.
    32. Qin, T., et al., Amorphous hole-transporting layer in slot-die coated perovskite solar cells. Nano Energy, 2017. 31: p. 210-217.
    33. Kim, J.-E., et al., Slot die coated planar perovskite solar cells via blowing and heating assisted one step deposition. Solar Energy Materials and Solar Cells, 2018. 179: p. 80-86.
    34. Deng, Y., et al., Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy & Environmental Science, 2015. 8(5): p. 1544-1550.
    35. Razza, S., et al., Perovskite solar cells and large area modules (100 cm 2 ) based on an air flow-assisted PbI 2 blade coating deposition process. Journal of Power Sources, 2015. 277: p. 286-291.
    36. Tang, S., et al., Composition Engineering in Doctor-Blading of Perovskite Solar Cells. Advanced Energy Materials, 2017. 7(18).
    37. Zhong, Y., et al., Blade-Coated Hybrid Perovskite Solar Cells with Efficiency > 17%: An In Situ Investigation. ACS Energy Letters, 2018. 3(5): p. 1078-1085.
    38. Li, C., et al., Monoammonium Porphyrin for Blade-Coating Stable Large-Area Perovskite Solar Cells with >18% Efficiency. J Am Chem Soc, 2019. 141(15): p. 6345-6351.
    39. Mallajosyula, A.T., et al., Large-area hysteresis-free perovskite solar cells via temperature controlled doctor blading under ambient environment. Applied Materials Today, 2016. 3: p. 96-102.
    40. Kim, J.H., et al., Enhanced Environmental Stability of Planar Heterojunction Perovskite Solar Cells Based on Blade-Coating. Advanced Energy Materials, 2015. 5(4).
    41. Yang, M., et al., Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nature Energy, 2017. 2(5).
    42. Zhang, B., et al., Carrier Transport in CH3NH3PbI3Films with Different Thickness for Perovskite Solar Cells. Advanced Materials Interfaces, 2016. 3(17).
    43. Baikie, T., et al., Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. Journal of Materials Chemistry A, 2013. 1(18).
    44. Yin, W.-J., et al., Halide perovskite materials for solar cells: a theoretical review. Journal of Materials Chemistry A, 2015. 3(17): p. 8926-8942.
    45. Zhang, H., et al., Origin of photoactivity in graphitic carbon nitride and strategies for enhancement of photocatalytic efficiency: insights from first-principles computations. Phys Chem Chem Phys, 2015. 17(9): p. 6280-8.
    46. Abdulsalam, H., G. Babaji, and H. Tela Abba, The Effect of Temperature and Active layer thickness on the Performance of CH3NH3PbI3 Perovskite Solar Cell: A Numerical Simulation approach. 2018.

    下載圖示 校內:2022-01-01公開
    校外:2022-01-01公開
    QR CODE