簡易檢索 / 詳目顯示

研究生: 簡佳珊
Chien, Chia-Shan
論文名稱: 射頻磁控濺鍍法製備應用於RRAM之鑭釓氧薄膜的電特性及機制研究
Electrical properties and Current Conduction Mechanisms of LaGdO3 Thin Film by RF Sputtering for RRAM Applications
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 76
中文關鍵詞: 射頻磁控濺鍍法鑭釓氧薄膜電阻式記憶體非晶態
外文關鍵詞: PF Sputter, LaGdO3, RRAM, amorphous
相關次數: 點閱:45下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以射頻磁控濺鍍法在透明ITO玻璃基板上沉積非晶態的鑭釓氧(LGO)薄膜,並鍍上金屬上電極製成Al/LGO/ITO元件以觀察其電阻轉換特性。第一部分討論不同LGO介電層厚度(25/55/95 nm)之特性表現,在25 nm時能觀察到較好的單極轉換特性,轉換次數到達110次,Ron/Roff約為105。第二部份我們藉由觀察不同的沉積氣氛比例(Ar:O2)所形成之薄膜,並討論氧空缺對元件特性的影響,當通入O2的比例大於20%時會使薄膜沉積速率降低,膜厚變薄且薄膜內氧空缺增加,因此所形成的導電燈絲較粗,使所需的操作電壓上升也使操作次數下降。第三部分在薄膜退火處理方面,退火溫度提高使擴散至介電層中的In離子比例增加,In離子與氧空缺一起形成導電燈絲可減少在SET過程所需施加的電壓,當退火溫度為400oC時能有效的使操作電壓降低且更穩定,操作次數達到452次,Ron/Roff維持在約104,有最好的電阻轉換特性。最後以不同上電極(Al、Ti)之元件來加以分析其導通機制,兩種電極的高阻態及低阻態都分別為Schottky及歐姆導通主導,Ti/LGO/ITO同樣具有單極轉換特性,但特性表現不佳,說明其轉換特性與其上電極和介電層的功函數差有關。

    In this study, we deposited the amorphous LaGdO3 thin films on by RF sputtering, and the unipolar resistive switching (URS) properties in Al/LGO/ITO structure was investigated. Through different deposition atmosphere Ar/O2 ratios and thicknesses, we assume that the conductive filaments can be mostly dominated by oxygen vacancies. Besides, the RS characteristics and operating voltage were improved after annealing. It’s speculated that the In ions diffused by ITO participate in the formation of the filaments. Finally, we change the top electrode to investigate the conduction mechanism. The current conduction mechanism of the device in LRS and HRS were found to be dominated by the Ohmic behavior and Schottky emission respectively. It was also confirmed that the potential barrier height between top electrode and LGO is a significant factor on the RS characteristics.

    摘要 I 致謝 X 目錄 XII 圖目錄 XV 表目錄 XVIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 第二章 文獻回顧 3 2-1 記憶體介紹 3 2-1-1 非揮發性記憶體[13] 3 2-2 電阻式記憶體(RRAM) 7 2-2-1 電阻轉換之基本原理 7 2-3 電阻轉換機制 9 2-3-1 焦耳熱效應(Jouel heating) 10 2-3-2 價電子轉換效應(Valance change effect) 10 2-3-3 離子遷移機制(Ion migration) 11 2-4 漏電流傳導機制 12 2-4-1 電極限制傳導機制(electrode-limited) 13 2-4-2 本體限制傳導機制(bulk-limited) 14 2-5 材料選擇 19 2-5-1 稀土族氧化物 19 2-5-2 LaGdO3 19 第三章 實驗步驟與方法 22 3-1 實驗材料 22 3-2 製程設備 23 3-2-1 射頻磁控濺鍍系統 23 3-2-2 管型高溫爐 24 3-2-3 電子束蒸鍍機 24 3-3 分析儀器 25 3-3-1 多功能X光薄膜繞射分析 25 3-3-2 高解析掃描電子顯微鏡 26 3-3-4 原子力顯微鏡 27 3-4 實驗流程 28 3-4-1 實驗步驟 29 第四章 結果與討論 31 4-1 LaGdO3薄膜製備 31 4-1-1 粉末靶材XRD分析 31 4-1-2 薄膜成分與元件結構分析 32 4-2 不同薄膜厚度之Al/LGO/ITO電阻轉換分析 37 4-3 不同沉積氣氛下Al/LGO(25 nm)/ITO電阻轉換特性影響 44 4-3-1 薄膜分析 44 4-3-2 電阻轉換特性分析 47 4-4 不同退火溫度下Al/LGO(25 nm)/ITO電阻轉換特性影響 52 4-4-1 薄膜分析 52 4-4-2 電阻轉換特性分析 55 4-5 不同上電極對電阻轉換特性分析 63 4-5-1 電阻轉換特性分析 63 4-5-2 導通機制討論 67 4-6 比較與討論 70 第五章 結論 72 第六章 參考文獻 73

    [1] C. Rohde, B. Choi, D. Jeong, S. Choi, J. Zhao and C. Hwang, "Identification of a determining parameter for resistive switching of TiO2 thin films", Applied Physics Letters, vol. 86, no. 26, p. 262907, 2005.
    [2] H. Lee et al., "Low-Power Switching of Nonvolatile Resistive Memory Using Hafnium Oxide", Japanese Journal of Applied Physics, vol. 46, no. 4, pp. 2175-2179, 2007.
    [3] Z. Yan and J. Liu, "Resistance switching memory in perovskite oxides", Annals of Physics, vol. 358, pp. 206-224, 2015.
    [4] P. Misra, S. Pavunny and R. Katiyar, "On the Resistive Switching and Current Conduction Mechanisms of Amorphous LaGdO3 Films Grown by Pulsed Laser Deposition", ECS Transactions, vol. 53, no. 3, pp. 229-235, 2013.
    [5] K. Liu et al., "Investigation of the effect of different oxygen partial pressure to LaAlO3 thin film properties and resistive switching characteristics", Thin Solid Films, vol. 520, no. 4, pp. 1246-1250, 2011.
    [6] X. Liu et al., "Organic nonpolar nonvolatile resistive switching in poly(3,4-ethylene-dioxythiophene): Polystyrenesulfonate thin film", Organic Electronics, vol. 10, no. 6, pp. 1191-1194, 2009.
    [7] M. Liu, Z. Abid, W. Wang, X. He, Q. Liu and W. Guan, "Multilevel resistive switching with ionic and metallic filaments", Applied Physics Letters, vol. 94, no. 23, p. 233106, 2009.
    [8] G. Park, X. Li, D. Kim, R. Jung, M. Lee and S. Seo, "Observation of electric-field induced Ni filament channels in polycrystalline NiOx film", Applied Physics Letters, vol. 91, no. 22, p. 222103, 2007.
    [9] L. Goux, J. Lisoni, T. Gille, K. Attenborough and D. Wouters, "Low-Voltage Resistive Switching within an Oxygen-Rich Cu/SbTe Interface for Application in Nonvolatile Memory", Electrochemical and Solid-State Letters, vol. 11, no. 9, p. H245, 2008.
    [10] A. Chen, S. Haddad and Y. Wu, "A Temperature-Accelerated Method to Evaluate Data Retention of Resistive Switching Nonvolatile Memory", IEEE Electron Device Letters, vol. 29, no. 1, pp. 38-40, 2008.
    [11] S. Kim, H. Moon, D. Gupta, S. Yoo and Y. Choi, "Resistive Switching Characteristics of Sol–Gel Zinc Oxide Films for Flexible Memory Applications", IEEE Transactions on Electron Devices, vol. 56, no. 4, pp. 696-699, 2009.
    [12] D. Jeong et al., "Emerging memories: resistive switching mechanisms and current status", Reports on Progress in Physics, vol. 75, no. 7, p. 076502, 2012.
    [13] 李明道,新式非揮發性記憶體之發展與挑戰,奈米通訊21卷No.3
    [14] M. Gupta, J. Kedia, A , "Review on Resistive Random Access Memory", IJARECE,vol 7, Issue 3, 2018
    [15] W. Kim and S. Rhee, "Effect of the top electrode material on the resistive switching of TiO2 thin film", Microelectronic Engineering, vol. 87, no. 2, pp. 98-103, 2010.
    [16] F. Pan, S. Gao, C. Chen, C. Song and F. Zeng, "Recent progress in resistive random access memories: Materials, switching mechanisms, and performance", Materials Science and Engineering: R: Reports, vol. 83, pp. 1-59, 2014.
    [17] D. Ko, S. Kim, T. Ahn, S. Kim, Y. Oh and Y. Kim, "Effect of the electrode materials on the resistive switching of Ti4O7", Applied Physics Letters, vol. 101, no. 5, p. 053502, 2012.
    [18] A. Sawa, T. Fujii, M. Kawasaki and Y. Tokura, "Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti∕Pr0.7Ca0.3MnO3 interface", Applied Physics Letters, vol. 85, no. 18, pp. 4073-4075, 2004.
    [19] P. He et al., "Effect of sputtering atmosphere on the characteristics of ZrOx resistive switching memory", Semiconductor Science and Technology, vol. 32, no. 5, p. 055016, 2017.
    [20] K. Liu, W. Tzeng, K. Chang, Y. Chan and C. Kuo, "Bipolar resistive switching effect in Gd2O3 films for transparent memory application", Microelectronic Engineering, vol. 88, no. 7, pp. 1586-1589, 2011..
    [21] R. Waser and M. Aono, "Nanoionics-based resistive switching memories", Nature Materials, vol. 6, no. 11, pp. 833-840, 2007.
    [22] R. Waser, R. Dittmann, G. Staikov and K. Szot, "Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges", Advanced Materials, vol. 21, no. 25-26, pp. 2632-2663, 2009.
    [23] U. Celano et al., "Imaging the Three-Dimensional Conductive Channel in Filamentary-Based Oxide Resistive Switching Memory", Nano Letters, vol. 15, no. 12, pp. 7970-7975, 2015.
    [24] D. Ielmini, "Resistive switching memories based on metal oxides: mechanisms, reliability and scaling", Semiconductor Science and Technology, vol. 31, no. 6, p. 063002, 2016.
    [25] F.-C. Chiu, "A Review on Conduction Mechanisms in Dielectric Films", Advances in Materials Science and Engineering, 2014.
    [26] D. Jeong, H. Schroeder and R. Waser, "Abnormal bipolar-like resistance change behavior induced by symmetric electroforming in Pt/TiO2/Pt resistive switching cells", Nanotechnology, vol. 20, no. 37, p. 375201, 2009.
    [27] D. Kwon et al., "Atomic structure of conducting nanofilaments in TiO2 resistive switching memory", Nature Nanotechnology, vol. 5, no. 2, pp. 148-153, 2010.
    [28] Y. Yang, F. Pan, Q. Liu, M. Liu and F. Zeng, "Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application", Nano Letters, vol. 9, no. 4, pp. 1636-1643, 2009.
    [29] C. Child, "Discharge From Hot Cao", Physical Review (Series I), vol. 32, no. 5, pp. 492-511, 1911.
    [30] A. Dakhel, "Characterisation of Nd2O3 thick gate dielectric for silicon", physica status solidi (a), vol. 201, no. 4, pp. 745-755, 2004.
    [31] W. Chin, K. Cheong and Z. Hassan, "Sm2O3 gate dielectric on Si substrate", Materials Science in Semiconductor Processing, vol. 13, no. 5-6, pp. 303-314, 2010.
    [32] J. Lopes et al., "Amorphous ternary rare-earth gate oxides for future integration in MOSFETs", Microelectronic Engineering, vol. 86, no. 7-9, pp. 1646-1649, 2009.
    [33] L. Edge et al., "Thermal stability of amorphous LaScO3 films on silicon", Applied Physics Letters, vol. 89, no. 6, p. 062902, 2006.
    [34] S. Pavunny et al., "Advanced high-k gate dielectric amorphous LaGdO3 gated metal-oxide-semiconductor devices with sub-nanometer equivalent oxide thickness", Applied Physics Letters, vol. 102, no. 19, p. 192904, 2013.
    [35] S. Pavunny, J. Scott and R. Katiyar, "Lanthanum Gadolinium Oxide: A New Electronic Device Material for CMOS Logic and Memory Devices", Materials, vol. 7, no. 4, pp. 2669-2696, 2014.
    [36] A.A. Demkov,A. Navrotsky, "Materials fundamentals of gate dielectrics" , 2005
    [37] Y. Losovyj et al., "Comparison of n-type Gd2O3 and Gd-doped HfO2", Journal of Physics: Condensed Matter, vol. 21, no. 4, p. 045602, 2009.
    [38] G. Beskow, V.M. Goldschmidt, "Geochemische Verteilungsgesetze der Elemente", 1924
    [39] [5]M. Wang et al., "Investigation of One-Dimensional Thickness Scaling on Cu/HfOx/Pt Resistive Switching Device Performance", IEEE Electron Device Letters, vol. 33, no. 11, pp. 1556-1558, 2012.
    [40] C. Ramana, M. Vargas, G. Lopez, M. Noor-A-Alam, M. Hernandez and E. Rubio, "Effect of oxygen/argon gas ratio on the structure and optical properties of sputter-deposited nanocrystalline HfO2 thin films", Ceramics International, vol. 41, no. 5, pp. 6187-6193, 2015.
    [41] R. Bel Hadj Tahar, T. Ban, Y. Ohya and Y. Takahashi, "Tin doped indium oxide thin films: Electrical properties", Journal of Applied Physics, vol. 83, no. 5, pp. 2631-2645, 1998.
    [42] 黃孜玗,製程條件與上電極材料選擇對Metal/LaGdO3/Si金屬-氧化物-半導體電容之電特性研究. 成功大學電機工程學系學位論文,(2017) pp.56-57
    [43] D. Gallardo, C. Bertoni, S. Dunn, N. Gaponik and A. Eychmüller, " Cathodic and Anodic Material Diffusion in Polymer/Semiconductor -Nanocrystal Composite Devices", Advanced Materials, vol. 19, no. 20, pp. 3364-3367, 2007.
    [44] X. Wu, H. Xu, Y. Wang, A. Rogach, Y. Shen and N. Zhao, "General observation of the memory effect in metal-insulator-ITO structures due to indium diffusion", Semiconductor Science and Technology, vol. 30, no. 7, p. 074002, 2015.
    [45] S. Pavunny, R. Thomas, A. Kumar, J. Scott and R. Katiyar, "Optical Dielectric Function Modeling and Electronic Band Lineup Estimation of Amorphous High-k LaGdO3 Films", ECS Journal of Solid State Science and Technology, vol. 1, no. 4, pp. N53-N57, 2012.

    無法下載圖示 校內:2024-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE