| 研究生: |
林螢俞 Lin, Ying-Yu |
|---|---|
| 論文名稱: |
規則波與潛沒式垂直薄板交互作用之數值研究 Numerical Investigation of Regular Waves Interaction with a Submerged Vertical Thin Barrier |
| 指導教授: |
蕭士俊
Hsiao, Shih-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | RANS模式 、離散質點模式 、薄板 、潛堤 |
| 外文關鍵詞: | RANS model, Discrete particle model, Thin barrier, Submerged barrier |
| 相關次數: | 點閱:188 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係利用二維數值造波水槽模擬規則波通過一潛沒式垂直薄板之交互作用。而本研究所使用的數值模式為COBRAS (COrnell BReaking wave And Structure),為模擬真實流體的情況,本文使用之數值模式為求解雷諾方程式 (RANS) 與非線性 紊流閉合模式,並採用流體體積法 (VOF) 追蹤自由液面的變化情形。
而為更進一步瞭解真實質點之移動情形,本文結合離散質點模式 (Discrete particle model) 來計算質點的運動軌跡。此方法亦分別和Umeyama (2013) 之孤立波質點軌跡與Umeyama (2012) 之規則波質點軌跡進行驗證,其比較結果皆相當良好,顯示離散質點模式有其可信度。
本文藉由改變波浪之週期與結構物之孔隙率,進而得到一系列關於規則波與潛沒式垂直薄板之交互作用關係,而討論的主題包括渦度場、結構物之反射、透射及消散係數,以及結構物附近之質點運動軌跡。
This study presents a numerical study of regular waves interaction with a vertical, thin, submerged and slotted barrier using a two-dimensional volume of fluid (VOF)-type numerical model. The numerical model solves the Reynolds Averaged Navier-Stokes (RANS) equations for describing mean flow field with the nonlinear turbulence closure model for the effect of turbulence. The VOF method is used for tracking the free surface motion. The motion of fluid particle can provide an insight to the possible sediment movement. However some physical characteristics are distinct between the real sediment and the pure fluid particle. In order to provide more information on the possible sediment movement, the discrete particle model is integrated with the present RANS code using one-way coupling approach to calculate the trajectories of sediment. The capability of discrete particle model is validated against the experiments of Umeyama (2013) and Umeyama (2012) respectively for solitary wave and regular wave cases. Comparisons between present numerical results and the experimental data show fairly good agreements. Then, a set of numerical tests is carried out for a regular wave train propagating over a vertical, thin and submerged barrier with various wave periods and six types of barrier’s porosity. In particular, the characteristics of vorticity field in the vicinity of barrier, the variations of reflection, transmission and dissipation coefficients, and the trajectories of particles near the barrier are discussed and summarized.
1. Bagnold, R.A., (1947). Sand movement by waves : some small-scale experiments with sand of very low density. Journal of the ICE, 27(4), 447-469.
2. Bakhtyar, R., Yeganeh-Bakhtiary, A., Barry, D.A., Ghaheri, A., (2009). Two-phase hydrodynamic and sediment transport modeling of wave-generated sheet flow. Advances in Water Resources, 32, 1267-1283.
3. Bakhtyar, R., Barry, D.A., Li, L., Jeng, D.S., Yeganeh-Bakhtiary, A., (2009). Modeling sediment transport in the swash zone : A review. Ocean Eng., 36, 767-783.
4. Balaji, R., Sundar, V., (2004). Theoretical and experimental investigation on the wave transmission through slotted screens. Oceanic Eng., 8(2), 69-90.
5. Boussinesq, M.J., (1871). Théorie de l'intumescence liquide, appelée onde solitaire ou de translation, se propageant dans un canal rectangulaire, C. R. Acad. Sci. Paris, 72, 755-759.
6. Calantoni, J., Puleo, J.A., Holland, K.T., (2006a). Simulation of sediment motions using a discrete particle model in the inner surf and swash-zones. Continental Shelf Research, 26, 610-621.
7. Calantoni, J., Slinn, D.N., Holland, K.T., (2006b). Framework for direct numerical simulation of coupled two-phase wave bottom layer. Coast. Eng., 2278-2285.
8. Caligny, A.F.H.de, (1878). Expériences sur les mouvements des molécules liquides des ondes courantes, considérées dans leur mode d'action sur la marche des navires. C.R. Acad. Sci., Paris, 87, 1019-1023.
9. Chorin, A.J., (1968). Numerical solution of Navier-Stokes equations. Math. Comp., 22, 745-762.
10. Chorin, A.J., (1969). On the convergence of discrete approximations of the Navier-Stokes equations. Math. Comp., 23, 341-353.
11. Clauss, G.F., Habel, R., (1999). Hydrodynamic characteristics of underwater filter systems for coastal protection. Proceedings of Canadian Coastal Conference, 1, 139-154.
12. Clauss, G.F., Habel, R., (2000). Artificial reefs for coastal protection-transient viscous computation and experimental evaluation. International Conference on Coast. Eng., ICCE, 1799-1812.
13. Dattatri, J., Raman, H., Jothi Shankar, N., (1978). Performance characteristics of submerged breakwaters. Coast. Eng., 2153-2171.
14. Dean, R.G., Dalrymple, R.A., (1984), Water wave mechanics for engineers and scientists, Englewood Cliffs, NJ : Prentice Hall.
15. Drake, T.G., Calantoni, J., (2001). Discrete particle model for sheet flow sediment transport in the nearshore. J. Geophys. Res., 106(C9), 19859-19868.
16. Fenton, J., (1972). A ninth-order solution for the solitary wave. J. Fluid Mech., 53(2), 257-271.
17. Grimshaw, R., (1971). The solitary wave in water of variable depth, Part 2, J. Fluid Mech., 46, 611-622.
18. Hirt, C.W., Nichols, B.D., (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys., 39(1), 201-225.
19. Hsu, H.-C., Chen, Y.-Y., Hwung, H.-H., (2012). Experimental study of the particle paths in solitary water wave. Phil. Trans. R. Soc., 370, 1629-1637.
20. Huang, Z., (2007). Wave interaction with one or two rows of closely spaced rectangular cylinders. Ocean Eng., 34, 1584-1591.
21. Isaacson, M., Premasiri, S., Yang, G., (1998). Wave interactions with vertical slotted barriers. J. Waterw. Port Coast. Ocean Eng., ASCE, 124, 479-491.
22. Isaacson, M., Baldwin, J., Premasiri, S., Yang, G., (1999). Wave interactions with double slotted barriers. Appl. Ocean Res., 21, 81-91.
23. Karmakar, D., Guedes Soares, C., (2014). Wave transformation due to multiple bottom-standing porous barriers. Ocean Eng., 80, 50-63.
24. King, D.B., (1991). Studies in oscillatory flow bedload sediment transport. Ph.D dissertation, Calif. University, San Diego, La Jolla.
25. Koether, G., Oumeraci, H., (2002). Underwater-filter-systems : An innovative reef for coastal protection. International Conference on Coast. Eng., ICCE.
26. Kothe, D.B., Mjolsness, R.C., Torrey, M.D., (1991). RIPPLE : a new model for incompressible flows with free surface. Rep. LA-12007-MS, Los Alamos National Laboratory.
27. Koutandos, E.V., (2009). Hydrodynamics of vertical semi-immersed slotted barrier. WSEAS Transactions on Fluid Mechanics., 4(3), 85-96.
28. Koutandos, E.V., (2010). Double thin barriers under water wave forcing. J. of Marine Env. Eng., 9, 99-113.
29. Krishnakumar, C., Sundar, V., Sannasiraj, S.A., (2010). Hydrodynamic performance of single- and double- wave screens. J. Waterw. Port Coast. Ocean Eng., 136(1), 59-65.
30. Lee, J.-J., Skjelbreia, J.E., Raichlen, F., (1982). Measurement of velocities in solitary waves. J. Waterw. Port Coast. Ocean Eng., 108(2), 200-219.
31. Lin, P., (1998). Numerical modeling of breaking waves. Ph.D dissertation, Cornell University, Ithaca, USA.
32. Lin, P., (2004). A numerical study of solitary wave interaction with rectangular obstacles. Coast. Eng., 51, 35-51.
33. Lin, P., (2008), Numerical modeling of water waves(1st ed.), New York : Taylor & Francis.
34. Lin, P., Liu, P.L.-F., (1998a). A numerical study of breaking waves in the surf zone. J. Fluid Mech., 359, 239-264.
35. Lin, P., Liu, P.L.-F., (1998b). Turbulence transport, vorticity dynamics, and solute mixing under plunging breaking waves in surf zone. J. Geophys. Res., 103(C8), 15677-15694.
36. Liu, P.L.-F., Lin, P., Chang, K.-A., (1999). Numerical modeling of wave interaction with porous structures. J. Waterw. Port Coast. Ocean Eng., ASCE, 125(6), 322-330.
37. Longuet-Higgins, M.S., (1953). Mass transport in water waves. Phil. Trans. R. Soc. Lond., 245(903), 535-581.
38. Madsen, O.S., (1991). Mechanics of cohesionless sediment transport in coastal waters. Coastal Sediments, 15-27.
39. Mani, J.S., Jayakumar, S., (1995). Wave transmission by suspended pipe breakwater. J. Waterw. Port Coast. Ocean Eng., 121(6), 335-338.
40. Mansard, E.P.D., Funke, E.R., (1980). The measurement of incident and reflected spectra using a least squares method. Coast. Eng., ASCE, 8, 154-172.
41. Mei, C.C., (1989), The applied dynamics of ocean surface waves, Singapore : World Scientific.
42. Morsi, S.A., Alexander, A.J., (1972). An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech., 55(2), 193-208.
43. Ohyama, T., Kioka, W., Tada, A., (1995). Applicability of numerical models to nonlinear dispersive waves. Coast. Eng., 24, 297-313.
44. Oumeraci, H., Koether, G., (2009). Hydraulic performance of submerged wave absorber for coastal protection, In : Non-linear Wave Dynamics, Lynett, P. ed., 31-65.
45. Patarapanich, M., Cheong, H.-F., (1989). Reflection and transmission characteristics of regular and random waves from a submerged horizontal plate. Coast. Eng., 13, 161-182.
46. Rayleigh, L., (1876). On waves. Phil. Mag., 1(1), 257-279.
47. Rodi, W., (1980). Turbulence Models and Their Application in Hydraulics : a State of the Art Review. International Association for Hydraulic Research, Delft, The Netherlands. 9021270021.
48. Shen, Y.M., Ng, C.O., Zheng, Y.H., (2004). Simulation of wave propagation over a submerged bar using the VOF method with a two-equation turbulence modeling. Ocean Eng., 31, 87-95.
49. Shih, T.-H., Zhu, J., Lumley, J.L., (1996). Calculation of wall-bounded complex flows and free shear flows. Int. J. Numer. Meth. Fluids, 23(11), 1133-1144 Dec.
50. Stamos, D.G., Hajj, M.R., Telionis, D.P., (2003). Performance of hemi-cylindrical and rectangular submerged breakwaters. Ocean Eng., 30, 813-828.
51. Stokes, G.G., (1847). On the theory of oscillatory waves. Transactions of the Cambridge Philosophical Society, 8(4), 441-455.
52. Thomson, G.G., (2000). Wave transmission through multi-layered wave screens. Master Thesis, Queen’s University, Canada.
53. Torres-Freyermuth, A., Lara, J.L., Losada, I.J., (2010). Numerical modelling of short- and long- wave transformation on a barred beach. Coast. Eng., 57(3), 317-346.
54. Umeyama, M., (2012). Eulerian-Lagrangian analysis for particle velocities and trajectories in a pure wave motion using particle image velocimetry. Phil. Trans. R. Soc., 370, 1687-1702.
55. Umeyama, M., (2013). Investigation of single and multiple solitary waves using superresolution PIV. J. Waterw. Port Coast. Ocean Eng., ASCE, 139(4), 304-313.
56. Wiegel, R.L., (1960). A presentation of Cnoidal wave theory for practical application. J. Fluid Mech., 7, 273-286.
57. Wu, N.-J., Tsay, T.-K., Chen, Y.-Y., (2013). Generation of stable solitary waves by a piston-type wave maker. Wave Motion, 51(2), 240-255.
58. Wu, Y.-T., Hsiao, S.-C., (2012b). Numerical modeling of solitary wave interaction with a submerged perforated barrier. Proc. 34th Ocean Eng. Conf., Taiwan.
59. Wu, Y.-T., Hsiao, S.-C., Huang, Z.-C., Hwang, K.-S., (2012a). Propagation of solitary waves over a bottom-mounted barrier. Coast. Eng., 62, 31-47.
60. Wu, Y.-T., Hsiao, S.-C., Hwang, K.-S., Lin, T.-C., Torres-Freyermuth, A., (2011). Numerical study of solitary wave interaction with a slotted barrier. Proceedings of the 21th International Offshore (Ocean) and Polar Engineering Conference, Maui, Hawaii, USA, 3, 889-895.
61. Wu, Y.-T., Hsiao, S.-C., Lin, Y.-Y., (2013). Numerical study of solitary wave interaction with a submerged slotted barrier. J. Coast. and Ocean Eng., 13(1), 1-13.
62. Wu, Y.-T., Lin, Y.-Y., Hsiao, S.-C., (2013a). Numerical study of solitary wave interaction with double submerged barriers. Proc. 35th IAHR Congress, Chengdu, China.
63. Wu, Y.-T., Lin, Y.-Y., Hsiao, S.-C., (2013b). Numerical study of solitary wave interaction with a submerged dual-slotted-barrier system. Proc. 35th Ocean Eng. Conf., Taiwan.
64. 李政達,2008,「波流場中質點運動特性之試驗研究」,國立中山大學海洋環境及工程研究所碩士論文。
65. 林楚佑,2011,「Lagrangian 系統下孤立波特性之解析」,國立中山大學海洋環境及工程研究所碩士論文。