簡易檢索 / 詳目顯示

研究生: 張敏瑩
Chang, Min-Ying
論文名稱: 移動裝置之雙光伏模組室內外光獵能系統
Dual-PV-Module Indoor/Outdoor Light Energy Harvesting System for Mobile Devices
指導教授: 郭泰豪
Kuo, Tai-Haur
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 89
中文關鍵詞: 雙光伏模組電容充電式最大功率追蹤廣功率範圍快速照度變化光獵能系統移動裝置
外文關鍵詞: dual-PV-module, capacitor charging curve MPPT, wide harvester power throughput, fast irradiance changing, light energy harvesting system, mobile device
相關次數: 點閱:119下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一應用於移動裝置(例: 電子書)之光能獵能系統。由於移動裝置具有自市電充電之限制,因此我們透過光能獵能器獵取環境光能對其進行充電。然而,不同種類的光能模組有其合適的光源,加上我們可能使用電子書於室外高照度的環境,此環境容易發生快速遮蔭的情況而降低光能模組的轉換效率;或者處於室內低照度的環境閱讀,在此情況下控制器需要低功耗。為了能適應室內外情境,本篇使用不同種類的光能模組以對應其室內外光源,並提出一光能獵能系統具有快速的最大功率追蹤、寬廣的功率範圍設計。
    首先,本篇對應室內外情境分別選用非晶矽及單晶矽光能模組,並分析其性價比進行光能模組面積分配。並實現一事件觸發型可重組的最大功率追蹤機制,於室外環境下達到快速追蹤、高精準度;於室內環境下達到低功耗的效能。最後,功率級架構搭配所提出之控制機制能夠操作於連續及非連續導通之模式,使其功率範圍增加。
    本論文所提出之積體電路是使用台灣積體電路製造股份有限公司所提供的0.35μm 2P4M 5V 混合訊號互補式金氧半製程實現,整體晶片面積為2.7mm2,其具有最廣的功率範圍達到 9.6×106 且廣於現有文獻37%,及最快速之最大功率追蹤暫態時間。內部控制器於低功耗模式時電流消耗可降低至0.4μA。

    This work presents a light energy harvesting system (LEH) for mobile devices, e.g. the electronic book (E-book). In E-books, the requirement of charging battery by mains electricity limits the application range. Therefore, the LEH is embedded into an E-book to recharge the battery by harvesting light energy from photovoltaic (PV) modules. However, different types of PV modules have their own suitable light sources. Also, E-books may be used in outdoor condition where the fast shading condition happens easily and reduces the conversion efficiency of PV modules; or in indoor condition, where the controller needs low power consumption. To adapt to the conditions, two types of PV modules are used for their corresponding light sources in this work. The implented LEH features fast maximum power point tracking (MPPT) and wide harvester power throughput.
    First, amorphous and monocrystalline types of PV modules are chosen for indoor and outdoor condition, respectively. The cost-performance ratio is analyzed for the PV area allocation. Second, an event trigger reconfigurable MPPT circuit is realized to achieve fast transient speed in outdoor condition and low power consumption in indoor condition. Finally, the power stage with modified control technique is able to operate in both continuous and discontinuous conduction modes, thereby widening the harvester throughput range.
    The proposed IC is fabricated in TSMC 0.35μm 2P4M 5V Mixed-Signal CMOS process with chip area of 2.37mm2. It has the widest harvester power throughput of 9.6×106, which is 37% wider compared with state-of-the-arts, and the shortest MPP transient time. The controller current consumption is 0.4μA in low power mode.

    摘要 I Abstract II Acknowledgment III Table of Contents IV List of Tables VII List of Figures VIII Chapter 1. Introduction 1 1.1 Motivation 1 1.2 Organization 4 Chapter 2. System Design 5 2.1 Light Energy Harvesting System 5 2.2 PV Modules 5 2.2.1 Efficiency Analysis of PV Modules 5 2.2.2 Measurement of PV Modules 7 2.2.3 Cost-Performance Ratio of PV Modules 8 2.3 Reconfigurable Capacitor Charging Curve MPPT 10 2.3.1 Performance Indexes of MPPT 10 2.3.2 Periodically Trigger vs. Event Trigger for MPPT 11 2.3.3 MPP Locus and MPPT Algorithm 14 2.3.4 Capacitor Charging Curve MPPT 16 2.3.5 Comparison of MPPT Transient Time 17 2.3.6 MPPT Calibration 20 2.4 Power Stage Architectures 21 2.4.1 Comparison of Different Power Stage Architectures 21 2.4.2 Comparison of Buck-Boost Converter Control Methods 24 Chapter 3. Circuit Implementations 26 3.1 Mode Selector 27 3.2 Capacitor Charging Curve MPPT 29 3.2.1 Main Circuit of Capacitor Charging Curve MPPT 29 3.2.2 MPPT controller 31 3.2.3 Current Sensing of Mo-Si PV 33 3.2.4 Leakage from Switches and Capacitors 34 3.3 Indoor MPPT Calibration 35 3.4 Outdoor MPPT Calibration 36 3.4.1 Transient Detection of Mo-Si PV 36 3.4.2 Power Comparison and MPP Calibration Circuit 37 3.5 Startup 41 3.6 Clock Generator 43 3.7 Voltage Regulation 45 3.7.1 PV & Load Monitor Trigger Generator 45 3.7.2 Pulse Skipping Modulation (PSM) Control 47 3.7.3 Pulse Width Modulation (PWM) Control 49 3.7.4 Power MOSFETs Control Signal Generator 50 3.8 Highest Voltage Selector 51 3.9 Power MOSFETs Sizing and Driver 52 3.10 Parasitic Considerations 56 3.10.1 Parasitic Effects of Power MOSFETs 56 3.10.2 Circuit Models for Diffused Resistor 58 3.10.3 Parasitic Modeling of PCB and Bonding Wires 59 3.11 Other Design Issues 63 3.11.1 Battery Voltage Splitting 63 3.11.2 Supply Voltage for Drivers 63 3.11.3 Power Supply Modeling 64 3.12 Pre-Layout Verification 65 3.12.1 DCM Verification 65 3.12.2 CCM Verification 67 3.12.3 Supply Noise 68 Chapter 4. Measurement Results 72 4.1 Layout Photograph 72 4.2 Post-Layout Verification 72 4.2.1 Startup 72 4.2.2 Charging and Load Regulation in DCM 74 4.2.3 Mode Transition 75 4.2.4 Irradiance Change Condition 76 4.2.5 Load Regulation in CCM under Different Corners 77 4.2.6 Load Regulation and Battery Overvoltage Condition 79 4.3 Measurement Environment 81 4.4 Chip Micrograph and Measurement Results 82 4.4.1 Chip Micrograph 82 4.4.2 Measurement Results 82 4.5 Comparison Table 84 Chapter 5. Conclusions and Future Works 85 5.1 Conclusions 85 5.2 Future Works 86 Chapter 6. References 87

    [1] M. R. Fernández, E. Z. Casanova and I. G. Alonso, “Review of display technologies focusing on power consumption,” in MDPI Journal of Sustainability, July 2015.
    [2] R. J. M. Vullers, R. van Schaijk, H. J. Visser, J. Penders, and C. Van Hoof, “Energy harvesting for autonomous wireless sensor networks,” IEEE Solid State Circuits Mag., vol. 2, no. 2, pp. 29-38, 2010.
    [3] Y. Qiu, C. V. Liempd, B. O. het Veld, P. G. Blanken, C. V. Hoof, “5μW-to-10mW input power range inductive boost converter for indoor photovoltaic energy harvesting with integrated maximum power point tracking algorithm,” in IEEE ISSCC Dig. Tech. Papers, pp. 118-119, Feb. 2011.
    [4] T.-H. Tsai, K. Chen, “A 3.4mW photovoltaic energy-harvesting charger with integrated maximum power point tracking and battery management,” in IEEE ISSCC Dig. Tech. Papers, pp. 72-74, Feb. 2013.
    [5] W.-C. Liu, Y.-H. Wang and T.-H. Kuo, “An Adaptive Load-Line Tuning IC for Photovoltaic Module Integrated Mobile Device with 470µs Transient Time, Over 99% Steady-State Accuracy and 94% Power Conversion Efficiency,” in IEEE ISSCC Dig. Tech. Papers, pp. 70-72, 2013.
    [6] S. Uprety and H. Lee, “A 43V 400mW-to-21W global-search-based photovoltaic energy harvester with 350µs transient time, 99.9% MPPT efficiency, and 94% power efficiency,” in IEEE ISSCC Dig. Tech. Papers, pp. 404-406, Feb. 2014.
    [7] S. Uprety and H. Lee, “A 0.4W-to-21W fast-transient global-search-algorithm based integrated photovoltaic energy harvester with 99% GMPPT efficiency and 94% power efficiency,” IEEE J. Solid-State Circuits, vol. 51, no. 9, Sep. 2016.
    [8] S. Uprety and H. Lee, “A 93%-power-efficiency photovoltaic energy harvester with irradiance-aware auto-reconfigurable MPPT scheme achieving >95% mppt efficiency across 650μw to 1w and 2.9ms focv MPPT transient time,” in IEEE ISSCC Dig. Tech. Papers, pp. 378-380, Feb. 2017.
    [9] S. Y. Jung, M. Lee, J. Yang and J. Kim, “A 20nw-to-140mw input power range, 94% peak efficiency energy-harvesting battery charger with frequency-sweeping input voltage monitor and optimal on-time generator,” in IEEE Symp. on VLSI Circuits, 2017.
    [10] IRENA, “IEAPVPS_End-of Life_Solar_PV_Panels_2016,” [Online]. Available: http://www.irena.org/DocumentDownloads/Publications/IRENA_IEAPVPS_End-of-Life_Solar_PV_Panels_2016.pdf.
    [11] Randall, J. F., Designing Indoor Solar Products, John Wiley & Sons, 2005.
    [12] S. Berry, N. White, Energy Harvesting for Autonomous Systems, Artech House, 2010.
    [13] M. Kasemann, K. Ruhle, K. M. Gad, S. W. Glunz, “Photovoltaic energy harvesting for smart sensor systems,” in Conf. of Proceedings of SPIE, May 2013.
    [14] M. Freunek, M. Freunek and L. M. Reindl, “Maximum efficiencies of indoor photovoltaic devices,” IEEE J. of Photovoltaics, vol. 3, no. 1, 2013.
    [15] F. Carvalho, C. Manuel, Paulino, N. F. S. Verissimo, CMOS Indoor Light Energy Harvesting System for Wireless Sensing Applications, Springer, 2016.
    [16] L. El Chaar, L. A. Lamont, E. El Zein, “Review of photovoltaic technologies,” in Renewable and Sustainable Energy Reviews, vol. 15, pp. 2165-2175, 6 2011.
    [17] U. Stutenbaeumer, B. Mesfin, “Equivalent model of monocrystalline, polycrystalline and amorphous,” in Renewable Energy 18, pp. 501-513, 1999.
    [18] IRENA, “The Power to Change: Solar and Wind Cost Reduction Potential to 2025,” [Online]. Available: http://www.irena.org/DocumentDownloads/Publications/IRENA_Power_to_Change_2016.pdf.
    [19] A. Skoczek, T. Sample and E. E. Dunlop, “The results of performance measurements of field-aged crystalline silicon photovoltaic modules,” Prog. in Photovoltaics: Research and Applications, 12 2008.
    [20] Y.-H. Wang, Y.-W. Huang, P.-C. Huang, H.-J. Chen, and T.-H. Kuo, “A single-inductor dual-path three-switch converter with energy-recycling technique for light energy harvesting,” IEEE J. Solid-State Circuits, vol. 51, no. 11, pp. 2716-2728, Nov. 2016.
    [21] P.-C. Huang and T.-H. Kuo, et al., “A reconfigurable and extendable single-inductor three-switch converter for indoor photovoltaic energy harvesting,” privated communication and will be submitted to IEEE J. Solid-State Circuits
    [22] S. Bandyopadhyay, P. P. Mercier, A. C. Lysaght, K. M. Stankovic, A. P. Chandrakasan, "A 1.1 nW energy-harvesting system with 544-pW quiescent power for next-generation implants", IEEE J. Solid-State Circuits, vol. 49, no. 12, pp. 2812-2824, Dec. 2014.
    [23] S. F. Al-Sarawi, “Low power Schmitt trigger circuit,” Electron. Lett., vol. 38, no. 18, pp. 1009–1010, Aug. 2002.
    [24] J.-M. Liu, P.-Y. Wang and T.-H. Kuo, “A current-mode DC–DC buck converter with efficiency-optimized frequency control and reconfigurable compensation,” IEEE Trans. on Power Electron., vol. 2, no. 27, pp. 869-880, Feb. 2012.

    無法下載圖示 校內:2023-09-03公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE