簡易檢索 / 詳目顯示

研究生: 黃文彥
Huang, Wen-Yan
論文名稱: 以Mg(OH)2 與MgO方式製作微波介電陶瓷材料Mg(Ti0.95Zr0.05)O3之介電特性比較探討與τf調整對濾波器之影響
Comparison on the Microwave Dielectric Properties of Mg(Ti0.95Zr0.05)O3 Made from Mg(OH)2 and MgO Formation and Study of the Effects of τf on Filters
指導教授: 李炳鈞
Li, Bing-Jing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 119
中文關鍵詞: 微波介電陶瓷材料Mg(Ti0.95Zr0.05)O3MgO與Mg(OH)2τf 的影響濾波器
外文關鍵詞: microwave dielectric ceramic material, Mg(Ti0.95Zr0.05)O3, MgO and Mg(OH)2, effect of temperature coefficient of resonant frequency, filter
相關次數: 點閱:70下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的為開發適合於3.5 GHz濾波器所使用的陶瓷基板材料,選用的陶瓷材料為Mg(Ti_0.95 Zr_0.05 ) O_3並加以改良使其有更高Q×f 值之表現,以降低製作濾波器時能量的損耗。在透過加入適當比例的補償器材料 (Ca_0.8 Sr_0.2)TiO_3 ,使其複合材料"τ" _f值在 ±5 ppm/°C之間,以了解不同"τ" _f值對自製濾波器特性造成的實質影響。
    分別採用MgO與Mg(〖OH)〗_2兩種不同程序製作 Mg(Ti_0.95 Zr_0.05 ) O_(3 ),利用固態燒結法持溫4小時的條件下製作,經由實驗結果發現由MgO程序製作的 Mg(Ti_0.95 Zr_0.05 ) O_(3 )(MTZ)最佳燒結溫度為1430℃、由Mg(〖OH)〗_2程序製作的 Mg(Ti_0.95 Zr_0.05 ) O_(3 )(MHTZ)最佳燒結溫度為1420℃,MTZ的 Q×f 值為248,400 GHz、MHTZ的 Q×f 值為333,800 GHz,可以發現MHTZ的 Q×f 值相較於MTZ的上升34%,這是因為與MTZ相比MHTZ不會有MgTi_2 O_5、Mg_2 TiO_4 等二次相的產生,並透過XRD量測而證實,不過MHTZ的〖 ε〗_r降低為14.82,τ_f 值則和MTZ一樣,維持在約-50 ppm/℃。將MHTZ和(Ca_0.8 Sr_0.2 )TiO_3 摻雜,進行"τ" _f值調整,實驗結果顯示在燒結溫度為1420℃ 且MHTZ與(Ca_0.8 Sr_0.2 )TiO_3的莫耳比例為0.95:0.05時,將可以得到τ_f值為2.26 ppm/℃的結果,但 Q×f 值為118,000 GHz,而〖 ε〗_r 略升至16.84。最後以Al_2 O_3、MTZ、MHTZ、0.95MHTZ-0.05CST設計及製作中心頻率為3.5 GHz之基板帶通濾波器,經由量測結果發現MHTZ基板有最好的濾波器特性,而由在不同溫度量測結果發現,四種濾波器其τ_f值在-60 ppm/℃~2.26 ppm/℃之間,但是都不會造成濾波器訊號的飄移,所以在3.5 GHz 下製作帶通濾波器以MHTZ是一個最佳的微波陶瓷基板材料。

    In this thesis, there are two purposes to be discussed. First purpose is improving the microwave dielectric ceramic material, Mg(Ti_095 Zr_0.05 ) O_3, to make a higher Q×f value performance and the second is adjusting "τ" _f to make 3.5GHz substrate filters. Mg(Ti_095 Zr_0.05 ) O_3 is made from Mg〖(OH)〗_2and MgO formation by solid method, respectively. The best microwave dielectric properties of MHTZ through Mg〖(OH)〗_2 formation are 〖 ε〗_r of 14.82, Q×fof333,800 GHz and"τ" _f of-50.73 ppm/℃, while which of MTZ through MgO formation are 〖 ε〗_r of 17.93, Q×f of 248,400 GHz and "τ" _f of-48.96 ppm/℃. The Q×f value of MHTZ is 34% higher than that of MTZ because no second phases in MHTZ, which was also verified by using XRD. However, Q×f values decreased as we lowered 〖 τ〗_f. For example, if 0.05(Ca_0.8 Sr_0.2 )TiO_3(CST) was added for the mixing, "τ" _f would be 2.26 ppm/℃ and Q×f value dropped from 333,800 GHz to 118,000 GHz. To examine whether〖 τ〗_f would affect filter operation, the characteristics of filters on substrates of Al2O3, MTZ, MHTZ and 0.95MHTZ-0.05CST were measuredat 20℃ and 80℃ . The results showed that no obvious change on the characteristics of filters even on the substrate with 〖" τ" 〗_f=-60 ppm/℃. Therefore, there is no need to trade-off between Q×f and "τ" _f. The ceramic substrate material with the highest Q×f value will be the favorable one for filter applications. From this study, it is MHTZ on which the filter had the characteristics of f0 at 3.49 GHz, S11 about 13.68 dB, S21 about 0.72 dB and the bandwidth ratio of 4.01%.

    摘要 I 致謝 XI 目錄 XII 表目錄 XIX 圖目錄 XX 第一章 緒論 1 1-1 研究背景與動機 1 1-2 研究目的與方法 5 第二章 陶瓷介電材料相關理論 7 2-1 5G通訊 7 2-2 介電原理 7 2-3 陶瓷基板與陶瓷介電共振器 11 2-4 影響介電材料特性的因素 12 2-4-1 相對介電常數(εr) 12 2-4-2 品質因數(Q ) 13 2-4-3 介電常數頻率溫度飄移係數(τε)與共振頻率溫度飄移係數(τf) 15 2-5 陶瓷介電材料微波特性 18 2-5-1 Al2O3 18 2-5-2 MgTiO3 18 2-5-3 CaTiO3 22 2-6 介電陶瓷材料燒結原理 23 2-6-1 介電陶瓷材料燒結的擴散機制 23 2-6-2 介電陶瓷材料燒結過程 24 2-6-3 介電陶瓷材料燒結種類 26 第三章 濾波器與微帶線相關理論 28 3-1 濾波器原理 28 3-1-1 濾波器簡介 28 3-1-2 濾波器種類 28 3-1-3 濾波器頻率響應種類 29 3-1-4 濾波器微波特性參數 30 3-2 微帶線原理 31 3-2-1 微帶傳輸線簡介 31 3-2-2 微帶線之傳輸組態 32 3-2-3 微帶線之各項參數公式計算及考量 33 3-2-4 微帶線之不連續效應 35 3-3 微帶線共振器種類 37 3-3-1 λ/4 短路微帶線共振器 38 3-3-2 λ/2 開路微帶線共振器 38 3-4 耦合理論 39 3-4-1 耦合係數 39 3-4-2 電場耦合 39 3-4-3 磁場耦合 42 3-4-4 混合耦合 44 3-4-5 影響耦合係數的參數 46 3-4-6 環形共振器耦合機制 47 3-5 λ /4 阻抗轉換器與開路殘斷 48 3-6 微帶線濾波器設計 49 第四章 實驗方法與規劃 51 4-1 粉體原料 51 4-2 固態合成法與陶瓷體之製作 51 4-2-1 粉體製作 53 4-2-2 塊體製作 54 4-3 實驗量測 54 4-3-1 EDS量測 54 4-3-2 XRD量測 55 4-3-3 SEM量測 58 4-3-4 視密度量測 59 4-3-5 微波介電特性量測 61 4-3-6 共振頻率溫度飄移係數量測 65 4-4 濾波器設計、模擬、實作與量測 65 4-4-1 濾波器電路參數設計分析 65 4-4-2 濾波器之模擬分析設計 67 4-4-3 濾波器之實作 68 4-4-4 濾波器之量測 69 4-5 實驗規劃 70 4-5-1 以MgO粉末重製 MgTi095Zr0.05O3之最佳燒結溫度與微波介電特性 70 4-5-2 以MgOH2粉末製作 MgTi095Zr0.05O3之最佳燒結溫度與微波介電特性 71 4-5-3 1-xMgTi0.95Zr0.05O3-xCa0.8Sr0.2TiO3 粉體之混相比例探討 71 4-5-4 製作成濾波器並量測不同材料下的特性變化 72 第五章 實驗結果與討論 74 5-1 以MgO粉末重製 MgTi095Zr0.05O3之特性確認 74 5-1-1 MgTi095Zr0.05O3 之視密度分析 74 5-1-2 MgTi095Zr0.05O3 之相對介電常數分析 75 5-1-3 MgTi095Zr0.05O3 之 Q×f 值分析 76 5-1-4 MgTi095Zr0.05O3 之EDS分析 77 5-1-5 MgTi095Zr0.05O3 之XRD分析 80 5-1-6 MgTi095Zr0.05O3 之共振頻率溫度飄移係數分析 81 5-1-7 總結 82 5-2 以 Mg(OH)2粉末製作 MgTi095Zr0.05O3之特性探討 83 5-2-1 MgTi095Zr0.05O3 之XRD分析 83 5-2-2 MgTi095Zr0.05O3 之視密度分析 84 5-2-3 MgTi095Zr0.05O3 之SEM分析 85 5-2-4 MgTi095Zr0.05O3 之 Q×f 值分析 88 5-2-5 MgTi095Zr0.05O3 之相對介電常數分析 89 5-2-6 MgTi095Zr0.05O3 之共振頻率溫度飄移係數分析 90 5-2-7 總結 91 5-3 1-xMgTi0.95Zr0.05O3-xCa0.8Sr0.2TiO3 之特性探討 92 5-3-1 1-xMgTi0.95Zr0.05O3-xCa0.8Sr0.2TiO3 之XRD分析 92 5-3-2 1-xMgTi0.95Zr0.05O3-xCa0.8Sr0.2TiO3 之共振頻率溫度飄移係數分析 93 5-3-3 1-xMgTi0.95Zr0.05O3-xCa0.8Sr0.2TiO3 之視密度分析 94 5-3-4 1-xMgTi0.95Zr0.05O3-xCa0.8Sr0.2TiO3 之相對介電常數分析 95 5-3-5 1-xMgTi0.95Zr0.05O3-xCa0.8Sr0.2TiO3 之 Q×f 值分析 96 5-3-6 總結 97 5-4 濾波器模擬與實作之探討 98 5-4-1 Al2O3 基板濾波器之模擬與實作量測分析 99 5-4-2 MgTi095Zr0.05O3MTZ 基板濾波器之模擬與實作量測分析 103 5-4-3 MgTi095Zr0.05O3MHTZ 基板濾波器之模擬與實作量測分析 106 5-4-4 1-xMgTi0.95Zr0.05O3-xCa0.8Sr0.2TiO3 基板濾波器之模擬與實作量測分析 109 5-4-5 總結 112 第六章 結論與未來展望 113 6-1 結論 113 6-2 未來方向 114 參考文獻 115

    [1] 配電通. "濾波器是什麼?濾波器的定義、分類、功能." https://kknews.cc/zh-tw/tech/jvoa8xp.html (accessed 2016).
    [2] 材料與測試. "陶瓷介質濾波器在5G新時代的前景." http://www.mat-test.com/Post/Details/PT191103000009bHeKg (accessed 2022).
    [3] J. Singh and S. Bahel, "Structural, vibrational, optical, dielectric, and shielding characteristics of (1-x)Mg(Ti0.95Sn0.05)O3-(x)SrTiO3 (0≤ x≤ 0.1) ceramics," Materials Research Bulletin, vol. 139, p. 111245, 2021.
    [4] RF技術社區. "低溫漂和零溫漂濾波器解決溫漂困擾." https://www.eet-china.com/mp/a25953.html (accessed 2020).
    [5] L. Ni, L. Li, and M. Du, "Ultra-high-Q and wide temperature stable Ba(Mg1/3Tax)O3 microwave dielectric ceramic for 5G-oriented dielectric duplexer adhibition," Journal of Alloys and Compounds, vol. 844, p. 156106, 2020.
    [6] Y.-C. Liou, S.-L. Yang, and S.-Y. Chu, "Effects of MgO and Mg(OH)2 on phase formation and properties of strontium–doped MgTiO3 microwave dielectric ceramics," Journal of alloys and compounds, vol. 576, pp. 161-169, 2013.
    [7] L. Cheng, P. Liu, S.-X. Qu, L. Cheng, and H. Zhang, "Microwave dielectric properties of Mg2TiO4 ceramics synthesized via high energy ball milling method," Journal of Alloys and Compounds, vol. 623, pp. 238-242, 2015.
    [8] Y.-C. Liou, S.-L. Yang, and S.-Y. Chu, "Effects of MgO and Mg(OH)2 on Phase Formation and Properties of MgTiO3 Microwave Dielectric Ceramics," Journal of Electronic Materials, vol. 44, no. 4, pp. 1062-1070, 2015.
    [9] J. Singh and S. Bahel, "Synthesis of single phase MgTiO3 and influence of Sn4+ substitution on its structural, dielectric and electrical properties," Journal of Alloys and Compounds, vol. 816, p. 152679, 2020.
    [10] C.-F. Tseng, "Relationships between Zr substitution for Ti and microwave dielectric properties in Mg(ZrxTi1−x)O3 ceramics," Journal of Alloys and Compounds, 2011.
    [11] V. S. Samyuktha, A. G. S. Kumar, T. S. Rao, and R. P. Suvarna, "Synthesis, structural and dielectric properties of Magnesium calcium titanate (1-x)MgTiO3-xCaTiO3 (x= 0, 0.1, 0.2 and 0.3)," Materials Today: Proceedings, vol. 3, no. 6, pp. 1768-1771, 2016.
    [12] W. W. Cho, K.-i. Kakimoto, and H. Ohsato, "High-Q microwave dielectric SrTiO3-doped MgTiO3 materials with near-zero temperature coefficient of resonant frequency," Japanese journal of applied physics, vol. 43, no. 9R, p. 6221, 2004.
    [13] J. Zhang, Z. Yue, Y. Zhou, X. Zhang, and L. Li, "Microwave dielectric properties and thermally stimulated depolarization currents of (1−x)MgTiO3–xCa0.8Sr0.2TiO3 ceramics," Journal of the American Ceramic Society, vol. 98, no. 5, pp. 1548-1554, 2015.
    [14] C.-L. Pan, C.-H. Shen, P.-C. Chen, and T.-C. Tan, "Characterization and dielectric behavior of a new dielectric ceramics MgTiO3–Ca0.8Sr0.2TiO3 at microwave frequencies," Journal of Alloys and Compounds, vol. 503, no. 2, pp. 365-369, 2010.
    [15] R. Cava, "Dielectric materials for applications in microwave communicationsBasis of a presentation given at Materials Discussion No. 3, 26–29 September, 2000, University of Cambridge, UK," Journal of Materials Chemistry, vol. 11, no. 1, pp. 54-62, 2001.
    [16] 維基百科. "IEEE 802.11." https://zh.wikipedia.org/wiki/IEEE_802.11 (accessed 2022).
    [17] 遠傳FET生活誌. "5G手機該怎麼挑選?這些規格弄懂就不會踩到雷." https://www.fetnet.net/content/cbu/tw/lifecircle/tech/202109/choose-5g-mobile-phone.html (accessed 2022).
    [18] 材料世界網. "5G 毫米波低介電LTCC 元件及封裝材料技術." https://www.materialsnet.com.tw/patent/PatentView.aspx?id=321 (accessed 2021).
    [19] "台灣5G行動計畫." https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/087b4ed8-8c79-49f2-90c3-6fb22d740488 (accessed 2022).
    [20] 紀博凱, "介電陶瓷材料(1-x)Mg(Ti0.95Sn0.05)O3-x(Ca0.8Sr0.2)TiO3之微波特性分析與共振溫度飄移係數對帶通濾波器特性關係與影響之探討," 碩士 論文, 電機工程研究所, 成功大學, 2018.
    [21] S. B. Narang and S. Bahel, "Low loss dielectric ceramics for microwave applications: a review," J. Ceram. Process. Res, vol. 11, no. 3, pp. 316-321, 2010.
    [22] J. Sheen, "Comparisons of microwave dielectric property measurements by transmission/reflection techniques and resonance techniques," Measurement Science and Technology, vol. 20, no. 4, p. 042001, 2009.
    [23] Fine Ceramics World. "Low Thermal Expansion." https://global.kyocera.com/fcworld/charact/heat/thermaexpan.html (accessed 2022).
    [24] S. Zhang et al., "Fundamental mechanisms responsible for the temperature coefficient of resonant frequency in microwave dielectric ceramics," Journal of the American Ceramic Society, vol. 100, no. 4, pp. 1508-1516, 2017.
    [25] R. D. Basics. "Circular waveguide cavity resonator ||Resonant frequency and Quality factor derivation||." https://www.youtube.com/watch?v=2Gqhl6FL2Zs&ab_channel=RFDesignBasics (accessed 2022).
    [26] 張善理, "摻雜 MCAS 玻璃之 Al2O3-TiO2 微波陶瓷特性之研究," 碩士 論文, 電機工程研究所, 中山大學, 2002.
    [27] J.-m. Chen, H.-p. Wang, S.-q. Feng, H.-p. Ma, D.-g. Deng, and S.-q. Xu, "Effects of CaSiO3 addition on sintering behavior and microwave dielectric properties of Al2O3 ceramics," Ceramics International, vol. 37, no. 3, pp. 989-993, 2011.
    [28] materialsproject. "MgTiO3." https://materialsproject.org/materials/mp-3771/# (accessed 2022).
    [29] X. Xue, H. Yu, and G. Xu, "Phase composition and microwave dielectric properties of Mg-excess MgTiO3 ceramics," Journal of Materials Science: Materials in Electronics, vol. 24, no. 4, pp. 1287-1291, 2013.
    [30] C.-L. Huang, C.-L. Pan, and J.-F. Hsu, "Dielectric properties of (1− x)(Mg0.95Co0.05)TiO3–xCaTiO3 ceramic system at microwave frequency," Materials research bulletin, vol. 37, no. 15, pp. 2483-2490, 2002.
    [31] C.-H. Shen and C.-L. Huang, "Microwave dielectric properties and sintering behaviors of (Mg0.95Ni0.05)TiO3–CaTiO3 ceramic system," Journal of alloys and compounds, vol. 472, no. 1-2, pp. 451-455, 2009.
    [32] C.-L. Huang and S.-S. Liu, "Characterization of extremely low loss dielectrics (Mg0.95Zn0.05)TiO3 at microwave frequency," Japanese journal of applied physics, vol. 46, no. 1R, p. 283, 2007.
    [33] J. Iqbal, H. Liu, H. Hao, A. Ullah, M. Cao, and Z. Yao, "Phase, microstructure, and microwave dielectric properties of a new ceramic system:(1−x)Mg(Ti0.95Sn0.05)O3–xCaTiO3," Ceramics International, vol. 43, no. 16, pp. 14156-14160, 2017.
    [34] J. Liu and G. Xu, "Hongtao Yu, Jilin Cheng, Wenbo Zhang," J Mater Sci: Mater Electron, vol. 23, pp. 572-575, 2012.
    [35] C.-F. Tseng, "Influences of Pressure Conditions on Synthesis of Mg(Zr0.05Ti0.95)O3 Dielectric Ceramics," Journal of Alloys and Compounds, 2012.
    [36] materialsproject. "CaTiO3." https://materialsproject.org/materials/mp-5827/ (accessed 2022).
    [37] R. Li, Q. Tang, S. Yin, and T. Sato, "Nonstoichiometrically Activated Sintering for Ca1-xSrxTiO3 Compound by Creating Point Defects," Chemistry of materials, vol. 18, no. 2, pp. 273-278, 2006.
    [38] M. N. Rahaman, Sintering of ceramics. CRC press, 2007.
    [39] M. N. Rahaman, Ceramic Processing and Sintering. Boca Press, 2003.
    [40] 百度百科. "固相燒結." https://baike.baidu.hk/item/%E5%9B%BA%E7%9B%B8%E7%87%92%E7%B5%90/5445152 (accessed 2021).
    [41] 戴明鳳, 無線通信之射頻被動電路設計 (全華圖書股份有限公司). 2017.
    [42] python. "巴特沃斯濾波器 python_巴特沃斯、切比雪夫、貝塞爾濾波器的區別." (accessed 2021).
    [43] M. N. O. Sadiku, Elements of Electromagnetics. 2001.
    [44] KAI CHANG, Microstrip Filters for RF/Microwave Applications. John Wiley & Sons, 2010.
    [45] T.-L. Wu, "Microwave Filter Design," Department of Electrical Engineering National Taiwan University, 2011.
    [46] T. C. Edwards and M. B. Steer, Foundations for microstrip circuit design. John Wiley & Sons, 2016.
    [47] A. A. Oliner, "Equivalent circuits for discontinuities in balanced strip transmission line," IRE Transactions on Microwave Theory and Techniques, vol. 3, no. 2, pp. 134-143, 1955.
    [48] S. Y. M.Makimoto, "Microwave Resonators and Filters for Wirless Communication Theory,Design and Application " 2000.
    [49] C. S. Analysis. "Quarter-Wave Impedance Transformer in Impedance Matching Applications." (accessed.
    [50] C.-F. Chen, G.-Y. Wang, and J.-J. Li, "Microstrip switchable and fully tunable bandpass filter with continuous frequency tuning range," IEEE Microwave and Wireless Components Letters, vol. 28, no. 6, pp. 500-502, 2018.
    [51] Y. I. Al-Yasir, N. O. Parchin, A. Alabdallah, A. M. Abdulkhaleq, R. A. Abd-Alhameed, and J. M. Noras, "Design of bandpass tunable filter for green flexible RF for 5G," in 2019 IEEE 2nd 5G World Forum (5GWF), 2019: IEEE, pp. 194-198.
    [52] J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. J. Scott, and D. C. Joy, Scanning electron microscopy and X-ray microanalysis. Springer, 2017.
    [53] 每日頭條. "電鏡能譜(EDS),作用真不簡單." https://kknews.cc/zh-tw/news/vln3b9a.html (accessed 2019).
    [54] ResearchMFG. "如何看懂EDX元素分析報告?EDX可以推估出樣品的化學分子式嗎." https://www.researchmfg.com/2020/04/edx-report-peak/ (accessed 2020).
    [55] S. A. Speakman, "Estimating crystallite size using XRD," MIT Center for Materials Science and Engineering, vol. 2, p. 14, 2014.
    [56] J. I. Goldstein et al., "The SEM and its modes of operation," in Scanning electron microscopy and X-ray microanalysis: Springer, 2003, pp. 21-60.
    [57] 田仕, 王为民, 张帆, and 何金云, "致密陶瓷材料密度和气孔率的测试方法," 理化检验 (物理分册), vol. 47, no. 8, pp. 476-479, 2011.
    [58] B. Hakki and P. D. Coleman, "A dielectric resonator method of measuring inductive capacities in the millimeter range," IRE Transactions on Microwave Theory and Techniques, vol. 8, no. 4, pp. 402-410, 1960.
    [59] W. E. Courtney, "Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators," IEEE Transactions on Microwave Theory and Techniques, vol. 18, no. 8, pp. 476-485, 1970.
    [60] Y. Kobayashi and M. Katoh, "Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method," IEEE Transactions on Microwave Theory and Techniques, vol. 33, no. 7, pp. 586-592, 1985.
    [61] L. Li, J. Y. Zhu, and X. M. Chen, "Measurement Error of Temperature Coefficient of Resonant Frequency for Microwave Dielectric Materials by $\mathrm {TE} _ {\mathrm {01\delta}} $-Mode Resonant Cavity Method," IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 11, pp. 3781-3786, 2016.
    [62] C. F. Tseng, "Microwave dielectric properties of a new ultra low loss pervoskite ceramic," Journal of the American Ceramic Society, vol. 91, no. 12, pp. 4125-4128, 2008.
    [63] T. Shi et al., "Fabrication, sinterability and microwave dielectric properties of MgTiO3−(Ca0.8Sr0.2)TiO3 composite ceramics from nanosized powders," Vacuum, vol. 201, p. 111107, 2022.

    下載圖示 校內:2024-08-10公開
    校外:2024-08-10公開
    QR CODE