| 研究生: |
楊哲維 Yang, Zhe-Wei |
|---|---|
| 論文名稱: |
不同呼吸循環下健康及氣喘患者呼吸道內空氣與PM2.5之數值研究 Numerical Investigation of Air and PM2.5 in Healthy and Asthmatic Airway Models under Different Breathing Cycles |
| 指導教授: |
黃啟鐘
Hwang, Chii-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | PM2.5 、暫態流 、兩相流 、呼吸循環 、顆粒沉積 |
| 外文關鍵詞: | PM2.5, particle deposition, two phase flow, bifurcation, breathing cycles |
| 相關次數: | 點閱:84 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
題目:不同呼吸循環下健康及氣喘患者呼吸道內空氣與PM2.5之數值研究
研究生:楊哲維
指導教授:黃啟鐘
近年來,常聽聞台灣部分地區之空氣品質不佳甚至已達PM2.5濃度的警戒範圍,等同於紫爆濃度等級,而這些細懸浮微粒(particulate matter)通常附隨有毒物質經由呼吸系統進入人體囤積,進而造成健康的危害,為當今須關注重要議題之一,故此,本文從中探討PM2.5對於人體器官內的行為,並透過理論探討與數值模擬之研究方式。
經由相關理論驗證後,在數值模擬部分,本文參照其中之相關參數設定,以商用軟體ANSYS FLUENT來計算氣相空氣與固相粒子之三維不可壓縮暫態流,首先利用繪圖軟體CATIA建立健康及氣喘患者呼吸道模型,接著匯入ANSYS Meshing內來建構網格,最後再將網格導入FLUENT,利用正弦波模擬休息、輕微活動和適度運動呼吸循環時,其雷諾數與時間的關係以計算流場,並在入口處放入固態粒子,以使用者自訂函數(User Define Function,簡稱UDF)初始化固態粒子之初始條件後,進而求解雙向耦合之兩相暫態流。
以上,經本文模擬結果如下:(一) 在健康分歧管中,顆粒總沉積率極低;(二) 在氣喘分歧管中,迪恩渦流及二次流動皆與健康分歧管來的劇烈;(三) 在空氣中,顆粒粒徑越小囤積於人體體內之量也越高;(四)呼吸循環下,吸氣時之沉積量遠大於呼氣時之沉積量;(五) 氣喘呼吸道的呼吸循環效率略低於健康呼吸道。
此外,本文除了探討不同氣管模型和呼吸循環下顆粒之沉積分率,亦對於沉積位置及流場現象的可視化著墨,期望提供未來在PM2.5相關研究資料以及於健康風險評估方面提供幫助。
關鍵字: PM2.5、暫態流、兩相流、呼吸循環、顆粒沉積
The impacts of ambient PM2.5 on public health have become a concern in Taiwan and other parts of the world. Epidemiological and toxicological studies have shown that PM2.5 does not only induce cardiopulmonary disorders and impairments, but also contributes to a variety of other adverse health effects, such as driving the initiation and progression of diabetes mellitus and electing adverse birth outcomes. In this study, the ANSYS commercial code, comprehensive three-dimensional numerical model was introduced to study the gas-solid two-way flow behaviors in healthy and asthmatic airway. Three generations bifurcation models of respiratory G10-G12. Three realistic breathing patterns, i.e., rest condition, light activity and moderate exercise, were considered. Two different concentrations were used i.e., 30μg/m3 and 80μg/m3. The transient gas phase was modeled with laminar incompressible flow and the particle phase was captured by discrete phase model (DPM). Where air velocity was stronger, a more skewed phenomenon was observed during inhalation, and air velocity had two peak vectors combine to form one big vector in the next generation during exhalation. Moreover , the breathing in healthy airway more effective compared to asthmatic airway. A large amount of PM2.5 is not retained by the airways and can transit to the alveolar region. Thus, people with asthma have a higher total respiratory dose of PM2.5 for a given exposure, which may contribute to their increased susceptibility to the health effects of air pollution.
參考文獻
【1】 R. Chen, B. Hu, Y. Liu, J. Xu, G. Yang, D. Xu,C. Chen, Beyond PM 2.5: The role of ultrafine particles on adverse health effects of air pollution, Biochimica et Biophysica Acta (BBA)-General Subjects. (2016).
【2】 X. Yin, Z. Huang, J. Zheng, Z. Yuan, W. Zhu, X. Huang,D. Chen, Source contributions to PM 2.5 in Guangdong province, China by numerical modeling: Results and implications, Atmospheric Research, 186: 63-71. (2017).
【3】 H. H. Tsai, C. S. Yuan, C. H. Hung,C. Lin, Physicochemical properties of PM2. 5 and PM2. 5–10 at Inland and offshore sites over Southeastern Coastal Region of Taiwan Strait, Aerosol Air Qual. Res, 11: 664-678. (2011).
【4】 C. H. Lin, Y. L. Wu, C. H. Lai, J. G. Watson,J. C. Chow, Air quality measurements from the southern particulate matter supersite in Taiwan, Aerosol Air Qual. Res, 8(3): 233-264. (2008).
【5】 J. Kannosto, M. Lemmetty, A. Virtanen, J. Mäkelä, J. Keskinen, H. Junninen, T. Hussein, P. Aalto,M. Kulmala, Mode resolved density of atmospheric aerosol particles, Atmospheric Chemistry and Physics Discussions, 8(2): 7263-7288. (2008).
【6】 A. Khlystov, C. Stanier,S. Pandis, An algorithm for combining electrical mobility and aerodynamic size distributions data when measuring ambient aerosol special issue of aerosol science and technology on findings from the fine particulate matter supersites program, Aerosol Science and Technology, 38(S1): 229-238. (2004).
【7】 Z. Liu, B. Hu, D. Ji, Y. Wang, M. Wang,Y. Wang, Diurnal and seasonal variation of the PM 2.5 apparent particle density in Beijing, China, Atmospheric Environment, 120: 328-338. (2015).
【8】 L. Morawska, G. Johnson, Z. Ristovski,V. Agranovski, Relation between particle mass and number for submicrometer airborne particles, Atmospheric Environment, 33(13): 1983-1990. (1999).
【9】 I.-K. Lin, I.-F. Mao,M.-L. Chen, Study on particle PM2.5/PM10/PM25 mass concentration and size distribution in metropolis of Taiwan. (1997).
【10】H. Zhang,G. Papadakis, Computational analysis of flow structure and particle deposition in a single asthmatic human airway bifurcation, Journal of biomechanics, 43(13): 2453-2459. (2010).
【11】K. Horsfield, G. Dart, D. E. Olson, G. F. Filley,G. Cumming, Models
of the human bronchial tree, Journal of applied physiology, 31(2): 207-217. (1971).
【12】S. Khalafvand,M. Saidi, Eulerian modeling of particle deposition in a respiratory cycle using horsfield and weibel models for whole lung and the five lobes, Proceedings of the 12th Asian Congress of Fluid Mechanics: 18-21. (2008).
【13】E. R. Weibel, Morphometry of the human lung, The Journal of the American Society of Anesthesiologists, 26(3): 367-367. (1965).
【14】B. Wiggs, R. Moreno, J. Hogg, C. Hilliam,P. Pare, A model of the mechanics of airway narrowing, Journal of applied physiology, 69(3): 849-860. (1990).
【15】D. K. Walters,W. H. Luke, A method for three-dimensional Navier–Stokes simulations of large-scale regions of the human lung airway, Journal of Fluids Engineering, 132(5): 051101. (2010).
【16】F. Wallance O,H. Rahn, Hanbook of physiology, section 3 : Respiration
, 1: 926. (1964).
【17】Z. Zhang,C. Kleinstreuer, Effect of particle inlet distributions on deposition in a triple bifurcation lung airway model, Journal of Aerosol Medicine, 14(1): 13-29. (2001).
【18】I. Balásházy,W. Hofmann, Particle deposition in airway bifurcations
–II. Expiratory flow, Journal of Aerosol Science, 24(6): 773-786. (1993).
【19】Z. Zhang, C. Kleinstreuer,C. Kim, Gas–solid two-phase flow in a
triple bifurcation lung airway model, International Journal of Multiphase Flow, 28(6): 1021-1046. (2002).
【20】A. Moskal,L. Gradoń, Temporary and spatial deposition of aerosol particles in the upper human airways during breathing cycle, Journal of Aerosol Science, 33(11): 1525-1539. (2002).
【21】K. Inthavong, L.-T. Choi, J. Tu, S. Ding,F. Thien, Micron particle deposition in a tracheobronchial airway model under different breathing conditions, Medical engineering & physics, 32(10): 1198-1212. (2010).
【22】黃盛修, 徐淑欣, 陳春萬,陳志傑, Bolus 呼吸道微粒沉積測試系統的建置與比對測試, 勞動及職業安全衛生研究季刊, 24(1): 48-57. (2016).
【23】X. Chen, W. Zhong, B. Sun, B. Jin,X. Zhou, Study on gas/solid flow in an obstructed pulmonary airway with transient flow based on CFD–DPM approach, Powder technology, 217: 252-260. (2012).
【24】D. C. Chalupa, P. E. Morrow, G. Oberdörster, M. J. Utell,M. W. Frampton, Ultrafine particle deposition in subjects with asthma, Environmental Health Perspectives, 112(8): 879. (2004).
【25】M. He, T. Ichinose, M. Kobayashi, K. Arashidani, S. Yoshida, M. Nishikawa, H. Takano, G. Sun,T. Shibamoto, Differences in allergic inflammatory responses between urban PM2. 5 and fine particle derived from desert-dust in murine lungs, Toxicology and applied pharmacology, 297: 41-55. (2016).
【26】J. Blake, Mucus flows, Mathematical Biosciences, 17(3): 301-313. (1973).
【27】B. J. Wiggs, J. M. Drazen, D. M. Parks,R. D. Kamm, Mucosal folding in biologic vessels, Transactions of the ASME, 124: 334-341. (2002).
【28】K. Nazridoust,B. Asgharian, Unsteady-state airflow and particle depos- ition in a three-generation human lung geometry, Inhalation toxicology, 20(6): 595-610. (2008).
【29】M. C. Piglione, D. Fontana,M. Vanni, Simulation of particle deposition in human central airways, European Journal of Mechanics-B/Fluids, 31: 91-101. (2012).
【30】W. Hofmann, Modelling inhaled particle deposition in the human lung—a review, Journal of Aerosol Science, 42(10): 693-724. (2011).
【31】J. Van Doormaal,G. Raithby, Enhancements of the SIMPLE method for predicting incompressible fluid flows, Numerical heat transfer, 7(2): 147-163. (1984).
【32】F. J. Kelecy, Coupling momentum and continuity increases CFD robustness, Ansys Advantage, 2(2): 49-51. (2008).
【33】Z. Zhang,C. Kleinstreuer, Transient airflow structures and particle transport in a sequentially branching lung airway model, Physics of Fluids (1994-present), 14(2): 862-880. (2002).
【34】袁竹林, 朱立平, 耿凡,彭正標, 氣固兩相流動與數值模擬, 東南大學出版社. (2013).
【35】S. Morsi,A. Alexander, An investigation of particle trajectories in two-phase flow systems, Journal of Fluid mechanics, 55(02): 193-208. (1972).
【36】D. Y. Lee,J. W. Lee, Dispersion during exhalation of an aerosol bolus in a double bifurcation, Journal of Aerosol Science, 32(6): 805-815. (2001).
【37】湛含輝、成浩、劉建文、湛雪輝, 二次流原理, 中南大學出版社,長沙市. (2006).
【38】B. Sul, A. Wallqvist, M. J. Morris, J. Reifman,V. Rakesh, A cmputation-
al study of the respiratory airflow characteristics in normal and obstructed human airways, Computers in biology and medicine, 52: 130-143. (2014).
【39】W. R. Dean, Note on the motion of fluid in a curved pipe, Philosophical Magazine, 4: 208-223. (1927).
【40】Z. Zhang, C. Kleinstreuer,C. Kim, Flow structure and particle transport in a triple bifurcation airway model, Journal of Fluids Engineering, 123(2): 320-330. (2001).
【41】L. Zhang, B. Asgharian,S. Anjilvel, Inertial deposition of particles in
the human upper airway bifurcations, Aerosol Science and Technology, 26(2): 97-110. (1997).
【42】S. Zoltan, H. Alpar, B. Imre, H. Werner, B. Klara,S. Marius, Evaluation of inhaled drug deposition during an asthma attack using a stochastic lung model., Acta Medica Transilvanica, 18(1). (2013).
【43】B. J. Wiggs, J. M. Drazen, D. M. Parks,R. D. Kamm, Mucosal folding in biologic vessels. (2002).
校內:2022-06-15公開