| 研究生: |
王俊杰 Wang, Chun-Chieh |
|---|---|
| 論文名稱: |
高動態範圍CMOS影像感測器設計 Design of High Dynamic Range CMOS Image Sensor |
| 指導教授: |
賴源泰
Lai, Yen-Tai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 高動態範圍 、CMOS影像感測器 |
| 外文關鍵詞: | CMOS image sensor, high dynamic range |
| 相關次數: | 點閱:105 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
CMOS影像感測器與電荷耦合元件(Charge Couple Device CCD)相較,具有晶片整合、低功率、低成本與面積的優點。一般CMOS影像感測器的動態範圍(Dynamic Range)(約60dB)不足以捕獲真實世界完整的亮度範圍(超過100 dB)。有幾種利用控制時間的方法來增加動態範圍,然而這些方法無法增加最高的訊號雜訊比(Peak Signal-to-Noise)。
本論文中,我們設計一個可增加動態範圍與訊號雜訊比的CMOS影像系統,此系統使用像素(Pixel)層級類比數位轉換器(Analog-to-Digital Converter),且所讀出的數位訊號具有高速的特性。我們利用TSMC CMOS 0.18 μm 製程來製作影像感測器,經模擬動態範圍及訊號雜訊比同時都可以獲得增加。
Abstract
CMOS image sensors have some advantages compare with Charge-Coupled Device (CCD) that are on-chip functionality、 system power reduction、 cost and area. Typical CMOS image sensors do not have sufficient Dynamic Range (DR) (around 60 dB) to capture the full range of illumination in the real world (over 100 dB). To increase DR, several methods have been proposed using the time as a control variable. However, these methods do not increase peak Signal-to-Noise Ratio (SNR).
In this paper, we design a high DR and SNR CMOS imaging system which using pixel level Analog-to-Digital Converter (ADC), and digital data is read out at high speeds.[23] We intend to develop an image sensor by using TSMC CMOS 0.18 μm technology. Consequently, DR and peak SNR are increased simultaneously.
References
[1] A. Bermak, A. Bouzerdoum, and K. Eshraghian, “A vision sensor with on-pixel
ADC and in-built light adaptation mechanism,” Microelectronics Journal
33(12), pp. 1091–1096, 2002.
[2] B. Fowler, A. El Gamal, and D. Yang, “A CMOS area image sensor with
Pixel-level A/D conversion,” IEEE International Solid-State Circuits
Conference , pp. 226–227, February 1994.
[3] C. Jansson, “A high-resolution, compact, and low-power ADC suitable for
array implementation in standard CMOS,” IEEE Transactions on Circuits and
Systems I 42(11), pp. 904–912, November 1995.
[4] D. Yang, A. EI Gamal, B. Fowler, and H. Tian, ”A 640x512 CMOS Image Sensor
with Ultra Wide Dynamic Range Floating Point Pixel Level ADC”, ISSCC Digest
of Technical Papers, San Francisco, CA, February 1999
[5] D. Yang, B. Fowler, and A. EI Gamal. “A Nyquist Rate Pixel Level ADC for
CMOS Image Sensors “. IEEE Journal of Solid State Circuits, pages 348-356,
March 1999
[6] D. Yang and A. EI. Gamal, “Comparative Analysis of SNR for Image Sensors
with Widened Dynamic Range”. Proceeding of SPIE, volume 3649, San Jose, CA,
February 1999
[7] D. Stoppa, A. Simoni, L. Gonzo, M. Gottardi, and G. F. D. Betta, “Novel CMOS
image sensor with a 132-dB dynamic range,” IEEE Journal of Solid-State
Circuits 37(12), pp. 1846 –1852, December 2002.
[8] D. Yang, B. Fowler, A. El Gamal, and H. Tian, “Image sensor with ultrawide
dynamic range floating-point pixel-level ADC,” IEEE Journal of Solid-State
Circuits 34(12), pp. 1821–1834, December 1999.
[9] Eric R. Fossum, “CMOS Image Sensors: Electronic Camera-On-A-Chip,” IEEE
Transactions on Electron Devices, vol. 44, pp. 1689–1698, October 1991.
[10] G. P.Weckler, “Operation of p-n junction photodetectors in a photon flux
integration mode,” IEEE J. Solid-State Circuits, vol. SC-2, pp. 65–73,
1967.
[11] J. Hynecek, “A new device architecture suitable for high-resolution and
high performance image sensors,” IEEE Trans. Electron Devices, vol. 35, no.
5, May 1988.
[12] J. Rhee and Y. Joo, “Wide dynamic range CMOS image sensor with pixel level
ADC,” Electronics Letters 39(4), pp. 360– 361, February 2003.
[13] M. White, D. Lampe, F. Blaha, and I. Mack, “Characterization of surface
channel CCD image arrays at low light levels,” IEEE J. Solid-State
Circuits, vol. SC-9, pp. 1–13, Sept. 1974.
[14] N. Tanaka et al. “A 310 k Pixel Bipolar Imager (BASIS),” in ISSCC Dig.
Tech. Papers, Feb. 1989, pp. 96–97.
[15] O. Yadid-Pecht, B. Pain, B. Mansoorian, and E. R. Fossum, “Optimization of
active pixel sensor noise and responsivity for scientific applications,”
Solid-State Sensor Arrays: Development and Applications, Proc. SPIE, vol.
3019, pp. 125–136, 1997.
[16] P. Noble, “Self-scanned silicon image detector arrays,” IEEE Trans.
Electron Devices, vol. ED-15, pp. 202–209, Apr. 1968.
[17] R. Dyck and G. Weckler, “Integrated arrays of silicon photodetectors for
image sensing,” IEEE Trans. Electron Devices, vol. ED-15, pp. 196–201,
Apr. 1968.
[18] S. Kleinfelder, S. H. Lim, X. Q. Liu and A. EI. Gamal, “A 10,000 Frames/s
CMOS Digital Pixel Sensor”. IEEE Journal of Solid State Circuits, Vol 36,
No. 12, December 2001
[19] S. Decker, R. McGrath, K. Brehmer, and C. Sodini, “A 256×256 CMOS imaging
array with wide dynamic range pixels and column-parallel digital output,”
IEEE Journal of Solid State Circuits 33(12), pp. 2081– 2091, December 1998.
[20] S. Sedra and C. Smith, Microelectronic Circuits, 4th Ed., Oxford, New York,
1998
[21] T. Lul´e, B. Schneider and M. Bohm, “Design and fabrication of a high
dynamic range image sensor in TFA technology,” IEEE Journal of Solid-State
Circuits 34 (5) , pp. 704–711, May 1999.
[22] W. Bidermann, A. El Gamal, S. Ewedemi, J. Reyneri, H. Tian, D. Wile, and D.
Yang, “A 0.18µm high dynamic range NTSC/PAL imaging system-on-chip with
embedded DRAM frame buffer,” IEEE International Solid-State Circuits
Conference , pp. 212–213, February 2003.
[23] Chia-nan Yeh “High dynamic range CMOS digital pixel sensor”, Department of
Electrical Engineering, National Cheng Kung University Tainan, Taiwan,
R.O.C. Thesis for Master of Science, June 2003.
[24] X. Liu and A. El Gamal, “Photocurrent estimation for a self-reset CMOS
digital pixel sensor,” in Sensors and Camera Systems for Scientific,
Industrial, and Digital Photography Applications III, M. M. Blouke, J.
Canosa, and N. Sampat, eds., Proc. SPIE 4669, pp. 304–312, January 2002.