| 研究生: |
許平州 Hsu, Ping-Chou |
|---|---|
| 論文名稱: |
進化論演算法應用於大尺度系統之分散式自適應觀測器控制之數位再設計 Digital Redesign of the Decentralized Adaptive Observer-Based Control for Linear Large-Scale Systems with EP |
| 指導教授: |
蔡聖鴻
Tsai, Sheng-Hong Jason |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 進化論演算法 、分散式自適應控 |
| 外文關鍵詞: | ep, adaptive control |
| 相關次數: | 點閱:144 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
基於模型參考的分散式自適應觀察控制被由N個組成的一個連續時間的大規模多變系統提出的子系統與未知參數相互連接。使用進化論演算法去找尋最佳的補償項使模型系統能追蹤的更完美,而類比控制的增益是由使用模式參考自適應控制理論基於Lyapunov的方法得到。在這文章內,它顯示了取樣分散式自適應控制理論能接近我們設計的輸出使誤差接近零。子系統之控制器無法取得其他子系統之資訊此一限制形成本研究之先天條件。而該架構之本質,控制系統之設計可拆分為兩部分,一是使模型狀態緊隨參考模型,另一部分是使模型訊號狀態緊隨參考訊號。理想的數位再設計系統對於數位分散式適應控制被提出討論。
A novel model-reference-based decentralized adaptive observer-based controller is proposed for a continuous-time large scale multivariable system consisting of N interconnected linear subsystem with unknown parameters. It is perfect to use evolutionism programming algorithms to look for the best parameter of model system. The adaptation of the analog controller gain is derived by using model-reference adaptive control theory based on Lyapunov's method. In this thesis, it is shown that the sampled-data decentralized adaptive control systems theoretically possible to asymptotically track desired outputs with zero error. We make the state of the model follow the model of consulting closely, another part makes the signal state of the model follow the signal of the plant closely. The optimal digital redesigned controller for the sampled-data decentralized adaptive control systems is newly proposed.
Reference
[1] Hansheng wv, Decentralized Robust Control for a class of Large-Scale Interconnected Systems with Uncertainties, Int. J. System Sci, vol.20, no.12, pp.2597-2608, 1989.
[2] Mohammed Jamshidi, LargeScale System: Modeling and Control, New York, Elserier Science Publishing Co., Inc., 1983.
[3] E. J. Davison, The Robust Decentralized Control of Servomechanism Problem for Composite System with Input-Output Interconnection, IEEE Trans. On Automatic Control AC 248, no.2, 1979.
[4] P. A. Ioannou and J. Sun, Robust Adaptive Control, Prentice Hall, 1996.
[5] D. T. Gavel and D. D. Siljak, “Decentralized adaptive control: Structural conditions for stability,” IEEE Trans. Automat. Contr., vol. 34, pp.413–426, Apr. 1989.
[6] L. Shi and S. K. Singh, “Decentralized adaptive controller design of large-scale systems with higher order interconnections,” IEEE Trans. Automat. Contr., vol. 37, pp. 1106–1118, Aug. 1992.
[7] R. Ortega and A. Herrera, “A solution to the decentralized adaptive stabilization problem,” Syst. Control Lett., vol. 20, pp. 299–306, 1993.
[8] A. Datta, “Performance improvement in decentralized adaptive control: A modified model reference scheme,” in Proc. 31st Conf. Decision Control, Tucson, AZ, Dec. 1992, pp. 1346–1351.
[9] Y. H. Chen, G. Leitmann, and Z. K. Xiong, “Robust control design for interconnected systems with time-varying uncertainties,” Int. J. Control, vol. 54, pp. 1119–1124, 1991.
[10] C. Wen, “Direct decentralized adaptive control of interconnected systems having arbitrary subsystem relative degrees,” in Proc. 33rd Conf. Decision Control, Lake Buena Vista, FL, Dec. 1994, pp. 1187–1192.
[11] -----, “Indirect robust totally decentralized adaptive control of continuous-time interconnected systems,” IEEE Trans. Automat. Contr., vol. 40, pp. 1122–1126, June 1995.
[12] K. Ikeda and S. Shin, “Fault tolerant decentralized control systems using backstepping,” in Proc. 34th Conf. Decision Control, New Orleans, LA, Dec. 1995, pp. 2340–2345.
[13] P. R. Pagilla, “Robust decentralized control of large-scale interconnected systems: General interconnections,” in Proc. Amer. Control Conf., San Diego, CA, June 1999, pp. 4527–4531.
[14] O Huseyin, M. E. Sezer, and D. D. Siljak, “Robust decentralized control using output feedback,” in IEE Proc., vol. 129, Nov. 1982, pp. 310–314.
[15] P. A. Ioannou and A. Datta, “Decentralized indirect adaptive control of interconnected systems,” Int. J. Adapt. Control Signal Processing, vol.5, pp. 259–281.
[16] K. S. Narendra and A. M. Annaswamy, Stable Adaptive Systems. Upper Saddle River, NJ: Prentice-Hall, 1989.
[17] K. S. Narendra and N. O. Oleng’, “Exact Output Tracking in Decentralized Adaptive Control Systems,” Center for Systems Science, Yale University, New Haven, CT, Tech. Rep. 0104, 2001.
[18] G. C. Goodwin and K. S. Sin, Adaptive Filtering Prediction and Control. Prentice Hall, 1984.
[19] Boris M. Mirkin, Decentralized adaptive controller with zero residual tracking errors, Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999.
[20] B. M. Mirkin, Proportional-integral-delayed algorithms of adaptation, Automation, no. 5, pp. 13-20, 1991.
[21] Kumpati S. Narendra and Nicholas O. Oleng’, Exact Output Tracking in Decentralized Adaptive Control Systems, IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 2, FEBRUARY 2002.
[22] Houpis, C. H. and Lamont, G. B., Digital Control Systems, McGraw Hill, New York, 1985.
[23] Kuo, B. C., Digital Control Systems, Holt, Rinehart and Winston, NY, 1980.
[24] Chen, T. and Francis, B. A., Optimal Sampled-Data Control Systems, Spring-Verlag, New York, 1995.
[25] Fujimoto, H., Hori, J. and Kawamura, A., “Perfect tracking control based on multirate feedforward control with generalized sampling periods”, IEEE Trans. on Industrial Electronics, vol. 48, no. 3, pp. 636-644, 2001.
[26] Fujimoto, H., Kawamura, A. and Tomizuka, M., “Generalized digital redesign method for linear feedback system based on n-delay control”, IEEE/ASME Trans. Mechaton., vol. 4, pp. 101-109, 1999.
[27] Ieko, T., Ochi, Y. and Kanai, K., “Digital redesign of linear state-feedback law via principle of equivalent area”, J. of Guidance, Control and Dynamics, vol. 24, pp. 857-859, 2001.
[28] Shieh, L. S., Wang, W. M. and Panicker, M. K. A., “Design of PAM and PWM digital controllers for cascaded analog systems”, ISA Transaction, vol. 37, pp. 201-213, 1998.
[29] Yang, T. and Chua, L.O., “Control of chaos using sampled-data feedback control”, Int. J. Bifurcation and Chaos, vol. 8, pp. 2433-2438, 1998.
[30] Rafee, N., Chen, T. and Malik, O. P., “A technique for optimal digital redesign of analog controllers”, IEEE Trans. Control Systems Technology, vol. 5, no. 1, pp. 89-99, 1997.
[31] D. T. Gavel and D. D. Siljak, “Decentralized adaptive control: Structural conditions for stability,” IEEE Trans. Automat. Contr., vol. 34, pp.413–426, Apr. 1989.
[32] I.H.Suh and Z.Bien (1980). Use of time delay action tn the controller design, IEEE Transactions on Automatic Control, 25, pp.600-603.
[33] Guo, S. M., Shieh, L. S., Chen, G. and Lin, C. F., “Effective chaotic orbit tracker: a prediction-based digital redesign approach”, IEEE Trans. on Circuits and Systems – I, Fundamental Theory and Applications, vol. 47, no. 11, pp. 1557-1570, 2000.
[34] Kuo, B. C., Digital Control Systems, Holt, Rinehart and Winston, NY, 1980.
[35] Lancaster, P., Lambda-matrices and vibrating systems, Pergamon Press, New York, 1966.
[36] Lewis, F. L. and Syrmos, V. L., Optimal Control, edition, Wiley, New York, 1995.
[37] Rafee, N., Chen, T. and Malik, O. P., “A technique for optimal digital redesign of analog controllers”, IEEE Trans. Control Systems Technology, vol. 5, no. 1, pp. 89-99, 1997.
[38] Shieh, L. S., Chang, F. R. and Mcinnis, B. C., “The block partial fraction expansion of a matrix fraction description with repeated block poles”, IEEE Trans. Automat. Contr., vol. AC-31, no. 3, 1986.
[39] Shieh, L. S. and Tsay, Y. T., “Algebra-geometric approach for the model reduction of large-scale multivariable systems”, Proc. IEE, vol. 131, part D., no. 1, pp. 23-36, 1984.
[40] Shieh, L. S. and Tsay, Y. T., “Block modal matrices and their applications to multivariable control systems”, Proc. IEE, vol. 129, part D., no. 2, pp. 41-48, 1982.
[41] Shieh, L. S. and Tsay, Y. T., “Transformations of a class of multivariable control systems to block companion forms”, IEEE Trans. Automat. Contr., vol. AC-27, pp.199-203, 1982.
[42] Shieh, L. S. and Tsay, Y. T., “Transformations of solvents and spectral factors of matrix polynomials and their applications”, Int. J. Contr., vol. 34, no. 4, pp. 813-823, 1981.
[43] Shieh, L. S., Tsay, Y. T. and Yates, R. E., “State-feedback decomposition of multivariable systems via block-pole placement”, IEEE Trans. Automat. Contr., vol. AC-28, no. 8, pp. 850-852, 1983.
[44] Shieh, L. S., Wang, W. M. and Panicker, M. K. A., “Design of PAM and PWM digital controllers for cascaded analog systems”, ISA Transaction, vol. 37, pp. 201-213, 1998.
[45] Tsay, Y. T. and Shieh, L. S., “Block decompositions and block modal controls of multivariable control systems”, Automatica, vol. 19, no. 1, pp. 29-40, 1983.
[46] Tsay, Y. T. and Shieh, L. S., “Irreducible divisors of λ-matrices and their applications to multivariable control systems”, Int. J. Contr., vol. 37, no. 1, pp. 17-36, 1983.
[47] Tsay, Y. T., Shieh, L. S., Yates, R. E. and Barnett, S., “Block partial fraction expansion of a rational matrix”, Linear and Multilinear Algebra, Vol. 11, pp.225-241, 1982.
[48] Yang, T. and Chua, L.O., “Control of chaos using sampled-data feedback control”, Int. J. Bifurcation and Chaos, vol. 8, pp. 2433-2438, 1998.
[49] K. S. Narendra and A. M. Annaswamy, Stable Adaptive Systems. Upper Saddle River, NJ: Prentice-Hall, 1989.