簡易檢索 / 詳目顯示

研究生: 林三富
Lin, San-Fu
論文名稱: InAlAs/InxGa1-xAs擬晶式通道及對稱型漸變式通道變晶型高電子移動率電晶體之研製
Investigation of InAlAs/InxGa1-xAs Metamorphic High Electron Mobility Transistors (MHEMT’s) With Pseudomorphic and Symmetrically-graded Channels
指導教授: 許渭州
Hsu, Wei-Chou
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 65
中文關鍵詞: 擬晶式通道高電子移動率電晶體
外文關鍵詞: metamorphic, HEMT's
相關次數: 點閱:70下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在本論文中,我們研製以分子束磊晶法成長具有兩種不同通道的In0.425Al0.575As/InxGa1-xAs變晶型(metamorphic)高電子移動率電晶體之特性。擬晶式(pseudomorphic)通道變晶型高電子移動率電晶體在高頻電路應用上可以獲得較佳的源極電流值(511 mA/mm)、外質轉導值(315 mS/mm)、高頻特性(fT=55.4 GHz,fmax=77.5 GHz)、以及低雜訊特性(NFmin=0.88 dB在2.4 GHz)。因此擬晶式通道變晶型高電子移動率電晶體適用於高頻及低雜訊電路的應用上。另一方面,由於擬晶式通道具有較大的導帶不連續性以及較佳的載子侷限能力,當溫度從300 K上升至500 K時,源極電流值下降了21.9﹪,外質轉導值下降了17.7﹪,因此顯示出極佳的熱穩定性。此外由於對稱型漸變式通道變晶型高電子移動率電晶體有效能隙比較高,所以可以獲得較佳的崩潰電壓(BVGD = -16.05 V, BVoff = 14.64 V, and BVon=10.9 V),當溫度從300 K上升至500 K時,崩潰電壓(BVGD )下降了26﹪。對稱型漸變式通道可得到較佳的閘極電壓擺幅(GVS=1.3 V)以及良好的小訊號輸出功率(Gs=19.2 dB,Pout=14.9 dBm),因此適用於高線性度及高功率電路應用上。

     In this thesis, the characteristics of the In0.425Al0.575As/InxGa1-xAs metamorphic high electron mobility transistors (MHEMT’s) with two different channel designs, grown by a molecular beam epitaxy (MBE) system have been studied. The studied devices exhibit high-frequency circuit applications, including the drain-source saturation current density (IDSS = 511 mA/mm), maximum extrinsic transconductance (gm,max =315 mS/mm), microwave performance (fT = 55.4 GHz, and fmax = 77.5 GHz), and low-noise characteristics (NFmin=0.88 dB at 2.4 GHz) have been achieved for the pseudomorphic channel MHEMT (PC-MHEMT). Therefore, PC-MHEMT is suitable for high-frequency and low-noise applications. On the other hand, due to higher conduction-band discontinuities (ΔEc) and good carrier confinement, the high-temperature device characteristics with good thermal stability is achieved for the deviations of IDSS and gm,max are 21.9﹪and 17.7﹪with increasing the temperature from 300 K to 500 K, respectively. In addition, the V-shaped symmetrically-graded channel MHEMT (SGC-MHEMT) due to the effective energy-gap is larger than that of PC-MHEMT, improved breakdown characteristics (BVGD =
    -16.05 V, BVoff = 14.64 V, and BVon=10.9 V) and the deviations of BVGD is 26﹪ with increasing the temperature from 300 K to 500 K. Therefore, SGC-MHEMT is suitable for high-power and high-linearity circuit applications, including improved gate-voltage swing (GVS = 1.3 V), small-signal power gain (Gs =19.2 dB), and output power (Pout =14.9 dBm).

    Contents (page) Abstract (Chinese) Abstract (English) Chapter 1 Introduction (1) Chapter 2 Conventional InGaAs Channel HEMT's Structure Layer Design (3) 2-1 Introduction to Metamorphic HEMT’s (3) 2-2 HEMT’s Structure Layer Design (4) Chapter 3 Device Structures and Device Processes (8) 3–1 Device Structures (8) 3–2 Device Processes (9) 3-2-1 Sample Orienting (9) 3-2-2 Mesa Isolation (9) 3-2-3 Source and Drain Metallization (10) 3-2-4 Gate Schottky Contact Formation (11) 3–3 Hall Measurement (11) Chapter 4 Experimental Results and Discussions (13) 4–1 Kink effect (13) 4–2 DC Characteristics (14) 4-2-1 Current-Voltage Characteristics and Extrinsic Transconductance (14) 4-2-2 Breakdown Voltage Characteristics (18) 4-3 Characteristics at Different Temperatures (20) 4-3-1 Current-Voltage and Extrinsic Transconductance Characteristics (20) 4-3-2 Breakdown Voltage Characteristics (22) 4-4 High Frequency Characteristics (24) 4-4-1 RF Characteristics (24) 4-4-2 Noise Characteristics (26) 4-4-3 Power Characteristics (27) Chapter 5 Conclusion (28) References (31) Figure (37)

    [1] T. Mimura, S. Hiyamizu, T. Fujii, and K. Nanbu, “A new Field-Effect
    Transistor with Selectively Doped GaAs/n-AlxGa1-xAs Heterojunctions”,
    Jap. J. Appl. Phys. vol.19, p.p.225-227, 1980.
    [2] S. Karmalkar, G. Ramesh,“A simple yet comprehensive unified physical
    model of the 2D electron gas in delta-doped and uniformly doped high
    electron mobility transistors,” IEEE Trans. Electron Devices, vol. 47,
    p.308, 2000.
    [3] Y. Ando, T. Itoh, “Accurate modeling for parasitic source resistance in
    two-dimensional electron gas field-effect transistors,” IEEE Trans.
    Electron Devices, vol. 36, p. 1036, 1989.
    [4] L. D. Nguyen, W. J. Schaff, P. J. Tasker, A. N. Lepore, L. F. Palmateer,
    M. C. Foisy, L. F. Eastman, “Charge control, DC, and RF performance of a
    0.35 um pseudomorphic AlGaAs/InGaAs modulation-doped field-effect
    transistor,” IEEE Trans. Electron Devices, vol. 35, p. 139, 1988.
    [5] C. Nguyen, and M. Micovic, “The state-of-the-art of GaAs and InP power
    devices and amplifiers,” IEEE Trans. Electron. Devices, vol. 48, p.p.
    472-478, 2001.
    [6] L. D. Nguyen, A.S. Brown, M. A. Thompson, and L. M. Jelloian, “50 nm
    self-aligned gate pseudomorphic AlInAs/GaInAs high electron mobility
    transistors,” IEEE Trans. Electron. Devices, vol. 39, p.p. 2007-2014,
    1992
    [7] H. S. Yoon, J. H. Lee, J. Y. Shim, S.J. Kim, D. M. Kang, J. Y. Hong, W.
    J. Chang, and K. H. Lee, “Low Noise characteristics of double-doped
    In0.52Al0.48As/ In0.53Ga0.47As power metamorphic HEMT on GaAs substrate
    with wide head T-shaped gate,” in Proc. Indium Phosphide and Related
    Materials, p.p. 201-204, 2002.
    [8] K. Ouchi, T. Mishima, M. Kudo and H. Ohta, “Gas-source molecular beam
    epitaxy growth of metamorphic InP/In0.5Al0.5As/In0.5Ga0.5As/InAsP high-
    electron-mobility structures on GaAs substrates,” Jpn. J. Appl. Phys.,
    vol. 41, p.p. 1004-1007, 2002.
    [9] S. Bollaert, Y. Cordier, M. Zaknoune, H. Happy, S. Lepilliet, A. Cappy,
    “ 0.06µm Gate length metamorphic In0.52Al0,48As/In0.53Ga0.47As HEMTs on
    GaAs with high fT and fmax,” in Proc. Indium Phosphide and Related
    Materials, p.p. 192-195, 2001.
    [10] K. Yuan, K. Radhakrishnan, H. Q. Zheng, S. F. Yoon, “Novel
    In0.52Al0.48As /In0.53Ga0.47As metamorphic high electron mobility
    transistors on GaAs substrate with InxGa1-xP graded buffer layers,”
    Materials Science in Semiconductor Processing 4, p.p. 641-645, 2001.
    [11] Y. Cordier, S. Bollaert, J. Dipersio, D. Ferre, S. Trudel, Y. Druelle
    and A. Cappy, “ MBE grown InAlAs/InGaAs lattice mismatched layers for
    HEMT application on GaAs substrate,” Appl. Surf. Sci., vol. 123/124,
    p.p. 734-737, 1998.
    [12] W.E. Hoke, P. S. Lyman, J. J. Mosca, C. S. Whelan and A. Torabi, “
    Growth and characteriaztion of metamorphic Inx(AlGa)1-xAs/InxGa1-xAs high
    electron mobility transistor structures with x = 0.3-0.4,” J. Vac, Sci.
    Tech. B, vol. 18, p.p. 1638-1641, 2000.
    [13] W. E. Hoke, P. J. Lemonias, J. J. Mosca, P. S. Lyman, A. Torabi, P. F.
    Marsh, R. A. MctTaggart, S. M. Lardizabal, and K. Hetzler, “ MBE growth
    and device performance of metamorphic high electron mobility structures
    fabricated on GaAs substrates,” J. Vac, Sci. Tech. B, vol. 17, p.p. 1131-
    1135, 1999.
    [14] W. C .Hsu, Y. J. Chen, C. S. Lee, T. B. Wang, J. C. Huang, D. H. Huang,
    K.H. Su, Y. S.Lin, C. L. Wu,“Characteristics of In0.425Al0.575As/InxGa1-
    xAs Metamorphic HEMTs With Pseudomorphic and Symmetrically Graded
    Channels,” IEEE Trans. Electron. Devices, Volume: 52, p.p.1079- 1086,
    2005.
    [15] Win, P.; Druelle, Y.; Cappy, A.; Cordier, Y.; Adam, D.; Favre, J,
    “Metamorphic In0.3Ga0.7As/In0.29Al 0.71As layer on GaAs: a new structure
    for millimeter wave ICs,” IEEE/Cornell Conference on Advanced Concepts
    in 2-4 Aug. p.p.:511 – 519, 1993.
    [16] M.Hueschen, N. Moll, E. Gowen, and J.Miller, “Pluse Doped MODFET’s”,
    IEEE, IDEM Technical Digest, p.438, 1984.
    [17] A. Fathimulls, J.Abrahams, T. Loughran, H. Hier, “High performance
    InAlAs/InGaAs HEMTs and MESFETs”, IEEE Electron Device Letters, vol.28,
    p1849,1992.
    [18] S.R. Bahl, J. A. del Alamo, “Elimination of mesa sidewall gate leakage
    in InAlAs/InGaAs HFETs”, IEEE Trans. On Electron Devices, vol. 13,
    p.p.195, 1992.
    [19] S. R. Bahl, M. H. Leary, J. A. del Alamo, “Mesa sidewall gate leakage
    in InAlAs/InGaAs HFETs”, IEEE Trans. on Electron Devices, vol. 39,
    p.2037, 1992.
    [20] W. C. Hsu, C. L. Wu, M. S. Tsai, C. Y. Chang, W. C. Liu, H. M. Shieh,
    “Charactezation of high performance inverted delta modulation doped
    (IDMD) GaAs/InGaAs psedomophic heterostructure FETs”, IEEE Trans. on
    Electron Devices, vol 9, p22, 1993.
    [21] G. I. Ng, W. P. Hong, D. Pavlidis, M. Tutt, P. K. Bhattacharya,
    “Characteristics of stained InGaAs/InAlAs HEMT with optimized transport
    parameters”, IEEE Electron Device Letters, vol. 9, p439, 1988.
    [22] S. R. Bahl, B. R. Bennett, J. A. Alamo, “Doubly stained InAlAs/n-InGaAs
    HFET with high breakdown voltage”, IEEE Electron Device Letters, vol.
    14, p. 22, 1993.
    [23] Sexl, M.; Bohm, G.; Maier, M.; Trankle, G.; Weimann, G.; Abstreiter, G,
    “MBE growth of metamorphic In(Ga)AlAs buffers”, Compound
    Semiconductors,IEEE International Symposium on 8-11 Sept, p.p.49 – 52,
    1997.
    [24] Y. Cordier, S. Bollaert, J. Dipersio, D. Ferre, S. Trudel, Y. Druelle
    and A. Cappy, “ MBE grown InAlAs/InGaAs lattice mismatched layers for
    HEMT application on GaAs substrate,” Appl. Surf. Sci., vol. 123/124.
    p.p. 734-737, 1998.
    [25] G. Meneghesso, D. Buttari, E. Perin, C. Canali, and E. Zanoni,
    “Improvement of DC, low frequency and reliability properties of
    InAlAs/InGaAs InP-Based HEMTs by means of an InP etch stop layer,” IEDM
    Tech. Dig., p.p.227-230, 1998.
    [26] G. Meneghesso, R. Luise, D. Buttari, A. Chini, H. Yokoyama, and T.
    Suemitsu, “Parasitic effects and long term stability of InP-HEMTs,”
    Microelectron Reliab, vol. 40, p.p. 1715-1720, 2000.
    [27] Somerville, M.H.; del Alamo, J.A.; Hoke, W, “Direct correlation between
    impact ionization and the kink effect in InAlAs/InGaAs HEMTs,” IEEE
    Electron Device Letters, Vol 17, Issue 10, p.p.473 – 475, Oct 1996.
    [28] Suemitsu, T., Enoki, T., Sano, N., Tomizawa, M., Ishii, Y., “An
    analysis of the kink phenomena in InAlAs/InGaAs HEMT's using two-
    dimensional device simulation,” Electron Devices, IEEE Transactions
    on ,Volume: 45 , Issue: 12 , p.p.2390 – 2399, Dec 1998.
    [29] Somerville, M.H., Ernst, A., del Alamo, J.A., “A physical model for the
    kink effect in InAlAs/InGaAs HEMTs,” Electron Devices, IEEE Transactions
    on ,Volume: 47 , Issue: 5, p.p.922 – 930 , May 2000.
    [30] Horio, K., Wakabayashi, A., “Numerical analysis of surface-state
    effects on kink phenomena of GaAs MESFETs,” Electron Devices, IEEE
    Transactions on ,Volume: 47 , Issue: 12 , p.p.2270 – 2276, Dec. 2000.
    [31] Haruyama, J., Negishi, H., Nishimura, Y., Nashimoto, Y., “Substrate-
    related kink effects with a strong light-sensitivity in AlGaAs/InGaAs
    PHEMT,” Electron Devices, IEEE Transactions on ,Volume: 44 , Issue: 1 ,
    p.p.25 – 33, Jan. 1997.
    [32] Y. J. Chan, C. S Wu, C. H. Chen, J. L., and J. I. Chyi,
    “Characteristics of In0.52(AlxGa1-x)0.48As/In0.53Ga0.48As (0≦x≦1)
    heterojunction and its application on HEMTs,”IEEE Trans. Electron.
    Devices, vol. 44, p. 708, 1997.
    [33] W. C. Hsu, H. M. Shieh, M. J. Kao, R. T. Hsu, Y. H. Wu, “On the
    improvement of gate voltage swings in δ-Doped GaAs/InGaAs/GaAs
    pseudomorphic heterostructures,” IEEE Trans Electron;40:p.p.1630-5,
    Dev .1993.
    [34] A.Mahajan, M. Arafa, P. Fay, C. Caneau, and I.Aesida, “Enhancement-mode
    high electron mobility transistors (E-HEMT’s) Lattice-Matched to InP,”
    IEEE Trans. Electron. Devices, vol. 45, p.2422, 1998.
    [35] J. Dickmann, S. Schildberg, K. Riepe, B. E. Maile, A. Schurr, A. Geyer,
    and P. Narozny, “Breakdown mechanisms in pseudomorphic InAlAs/InxGa1-xAs
    high electron mobility transistors on InP I : off-state,” Jpn. J. Appl.
    Phys, vol. 34, p.p. 66-71, 1995.
    [36] S. R. Bahl, J. A. del Alamo, J. Dickmann, and S. Schildberg, “Off-state
    breakdown in InAlAs/InGaAs MODFET’s,” IEEE Trans. Electron. Devices,
    vol. 42, p.p. 15-22, 1995.
    [37] G. Meneghesso, A. Neviani, R. Oesterholt, M. Matloubian, T. Liu, J. J.
    Brown, C. Canali, and E. Zanoni, “On-state and off-state breakdown in
    GaInAs/InP composite-channel HEMT’s with Variable GaInAs Channel
    Thickness,” IEEE Trans. Electron. Devices, vol. 46, p.p. 2-9, 1999.
    [38] G.Meneghesso, A.Mion, A. Neviani, M. Matloubian, J. Brown, M.Hafizi, T.
    Liu, C. Canali, M. Pavesi, M. Manfredi, and E. Zanoni, “Effects of
    channel quantization and temperature on off-state and on-state breakdown
    in composite channel and conventional InP-based HEMT’s,” in IEDM Tech.
    Dig., p. 43, 1996.

    下載圖示 校內:立即公開
    校外:2005-07-04公開
    QR CODE