| 研究生: |
曾姵茵 Zeng, Pei-Yin |
|---|---|
| 論文名稱: |
基因演算法對格網式分佈型降雨逕流模式建置之應用與比較 |
| 指導教授: |
游保杉
Yu, Pao-Shan 溫清光 Wen, Chin-Gung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 分佈型降雨逕流模式 、基因演算法 、水質模式 、檳榔園 |
| 外文關鍵詞: | Genetic algorithm, water quality model, Distributed rainfall-runoff model, Arecanut garden. |
| 相關次數: | 點閱:101 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究主要是以Fortran編寫基因演算法後與分佈型降雨逕流模式互相結合,自動率定出模式中所需要之參數並找出基因演算法的最佳設定;sGA最佳基本設定:族群數=100、字串長度=16位元、以均勻交換進行基因交換、基因交換機率=0.6、突變機率=0.02,而μGA最佳基本設定:族群數=5、字串長度=16位元、以均勻交換進行基因交換且基因交換機率=1。
以μGA進行分佈型降雨逕流模式之參數率定後,把得到的Ch參數與實際的降雨強度、臨前條件做回歸,可得判斷係數0.7以上的高度相關,符合了Ch參數之物理意義;過去常以SCE法進行自動率定,與μGA相比較,在小集水區SCE法的率定時間為μGA法之3.5倍,大集水區為1.5倍,而搜尋到的最佳參數兩者方法則沒有明顯的不同。
以μGA法結合分佈型降雨逕流模式後,推算大埔檳榔園全年地表逕量,再配合土壤沖刷模式、溶解性營養鹽模式及沉積性營養鹽等水質模式來模擬降雨期間地表逕流各污染物的產生量,並且以實際測定值來率定模式中所需要之參數。然後可求得大埔檳榔園地表逕流污染物年輸出量(單位:kg/ha-yr):SS=1650、NO3—N=0.025、TN=9.59、PO4—P=1.55、TP=2.5。
Abstrate
This study aims to develop a FORTRAN-coded Genetic Algorithm (GA) combined with a distributed rainfall-runoff (DRR) model for calibrating the model parameters and finding the optimal settings of the GA. In the results of the sGA, the optimal settings have been found as the population number= 100, the string length= 16 bits, the probability of crossover=0.6, and the probability of mutation= 0.02. However the results of μGA show the population number= 5, the string length= 16 bits, the probability of crossover=1, and the probability of mutation= 1.
The μGA also shows the calibration of DRR model and finds the Ch parameter has high correlation (R2=0.7) with the precipitation density and pre-rainfall condition. The result well fits the physical phenomenon of the Ch parameter. With comparison of SCE method, the consumption time would be reduced 3.5 times in small watersheds and 1.5 times in large watersheds. However, there is no difference in Ch value between SCE and μGA.
After well-developed μGA-DTRR model, this study has calculated the annual pollution loads of the arecanut garden in the Da-Pu area by ways of the soil-erosion model, solute nutrient model, and settlementation nutrient model.The results present SS=1650 kg/ha-yr, NO3—N=0.025 kg/ha-yr, TN=9.59 kg/ha-yr, PO4—P=1.55 kg/ha-yr, and TP=2.5 kg/ha-yr.
參考文獻
溫清光,曾文水庫水質調查及改善計畫,經濟部水利處南區水資源局,2003年11月。
劉光武,分佈型降雨-逕流模式之研究,國立成功大學水利工程研究所,碩士論文,1991年 6月。
3.鄭玉萩,格網式分佈型降雨-逕流模式之研究,國立成功大學水利工程研究所,碩士論文, 1994年6月。
游保杉、王毓麒,鹽水溪流域上游丘陵集水區降雨逕流分析(一),國科會研究計畫成果報告,2001年7月。
李怡真,山葵園非點源污染負荷模式之研究,國立成功大學環境工程研究所,碩士論文,2003年7月。
農業試驗所,大埔鄉土壤理化性質分析結果,雲林及嘉義山坡地土壤調查報告。
Burnash, R. J. , R. L. Ferral and R. A. Mcguire, ”A generalized stream flow simulation system, in Conceptual modeling for digital computers.” Natl. Weather Serv.,Sacramento, Calif..1973
Beven, K.J and P.E. O,Connell , “On the role of distributed modles in hydrology” ,Institute of Hydrology Report 81,Wallingford,UK, 1982
Carlos, A. C. C. and T. P. Gregorio, ”Multiobjective optimization using a micro-genetic algorithm.
Colin, R. R. ”Using genetic algorithms with small populations.” Published in S. Forrest (Ed.) 1993.
De Jong, K. A. “A genetic-based global function optimization technique”(Tech-nical Report No. 80-2). Pittsburgh:University of Pittsburgh , Deparment of Computer Science).1980.
De Jong, K. A. and W. M. Spears, ”On the virtues of parameterized uniform crossover.” In Proceedings of the 4th International Conference on Genetic Algorithms, La Jolla, CA, pp: 230-236. Morgan Kaufman. 1991
Duan, Q., H. V. Gupta and S. Sorooshian, “Effective and efficient global optimization for conceptual rainfall-runoff models.” Water Resources Research, VOL. 28, NO.4, pp:1015-1031.1992
Duan, Q. , V.K. Gupta and S. Sorooshian, “A shffled complex evolution approach for effective and efficient global minization.” Journal Optimization Theory and its Applications. 76(3),p.501-521, 1993
Duan, Q. , V. K. Gupta and S. Sorooshian, “Distribution diskette for the shuffled complex evolution(SCE-UA) method.” 1994.
Eckhardt, K. and J. G. Arnold, ”Automatic calibration of a distributed catchment model.”Journal of H. 251,pp.103-109. 2001
Franchini, M. , G. Galeati. and S. Berra, ”Global optimization techniques for the calibration of conceptual rainfall-runoff models.”Hydrological Sciences,43(3), 1998.
Goldberg, D.E. ”Sizing populations for serial and parallel genetic algortihms.” In J.David Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, pp: 70-79, San Mateo, California. 1989.
Goldberg, D.E. ”Genetic algorithms in search,optimization and machine learning.” Addison-Wesley, Reading, MA, pp:412, 1989.
Goldberg, D.E. and B.L. Miller, ”Genetic algorithms,tournament selection ,and the effects of noise.” Complex Systems, VOL. 9, NO. 3, pp:193-212, 1995
Goldberg, D.E. and F. G. Lobo, “The parameter-less genetic algorithm in practice.” IlliGAL Repart NO. 2001022., June 2001.
Grefenstette, J. J. “Optimization of control parameters for genetic algorithms.”
IEEE Transactions on Systems, Man, and Cybernetics, SMC-16(1) pp:122-128,January/February, 1986
Heitkoetter, J. and D. Beasley “The Hitch-Hiker's Guide to Evolutionary Computation”, 1994
Holland, J. H. ”Outline for a logical theory of adaptive systems. “J. Assoc. Comput. Mach., 3, 297 .1962.
Hollstein, R. B. ”Artificial genetic adaptation in computer control systems.” PhD thesis: University of Michigan, 1971.
Ibbitt, R. P. ” Systematic parameter fitting for conceptual models of catchment hydrology.” Ph.D dissertation,Imp. Coll. of Sci. and Technol., Univ. of London , London,Englind. 1970
Kachroo, R.K. ”River flow forecasting,5. Applications of a conceptual model.”,Journal of Hydrol.,VOL.133,pp:141-178. 1992
Krishnakumar, K. “Micro-genetic algorithms for stationary and non-stationary function optimization.” SPIE1196,Intelligent Control and Adaptive Systems,1989.
Kuczera, G. ”Efficient subspace probabilistic parameter optimization for catchment models.” Water Resources Res.Vol. 33.No. 1.pp.177-185. 1997
Liong, S.Y. and N . Muttil, ”Shuffled complex evolution coupled with experimental design technique.”29th International Association of Hydraulic Engineering and Research Congress, pp:16-21 , Beijing China.2001.
Madsen, H. ”Automatic calibration of a conceptual rainfall-runoff model using multiple objectives.” Jurnal of H.235, pp276-288, 2000
Miller,B.L.,and M.J.Shaw.”Genetic algorithms with dynamic niche sharing for multimodal function optimization.”IlliGAL Report No.95010,1995.
Nash, J. E. and J. V. Sutcliffe, “River flow forecasting through conceptual models.” Part 1:A disscussion of principle. Journal of Hydrol. VOL.10,pp:282-290. 1970.
O’Connell, P. E. , J. E. Nash and J. P. Farrell, ”River flow forecasting through conceptual models.”, Part 2:The Brosna catchment at Ferane, J.Hydrol. , 10,317-329. 1970
Ove, R. and R. Popple, ” Sequential annealing-gradient Gamma-Knife radiosurgery optimization.” Phys Med Biol. 2003
Powell, M. J. D. “Direct search algorithms for optimization caculations.” In Acta Numerica 1998. Cambridge University Press, 1998.
Refsgaard, J.C. and B. Storm, "Contruction,calibration and validation of hydrological models." In:Abbott, M.B. and Refsgaard, J.C. (Eds)Distributed Hydrological Modeling London, Kluwer Academic, pp:41-55, 1996
Rechenberg, I. ”Evolutionsstrategie: Optimierung technischer systeme nach prinzipien derbiologischen evolution. Frommann-Holzboog, Stuttgart. “1973.
Singh, V. P. “Mathematic modeling of watershed runoff”, International Conference on Water Resource Eng., Bangkok, Thailand, pp.10-13, 1978
Solomatine, D.P. ” Genetic and other global optimization algorithms-comparison and use in calibration problems.” Proc. Third Intern. Conference on Hydroinformatics, Copenhagen, Denmark, 1998.
Thian, Y.G. and G. F. Biftu, “Automatic calibration of conceptual rainfall-runoff models:optimization algorithms,catchment condition,and model structure.” Water resources research, VOL.32, NO.12, pp 3513-3524. 1996
Thyer, M. , G. Kuczera. and C. B. Bryson, ”Probabilistic optimization for conceptual rainfall-runoff models : A comparison of the shuffled complex evolution and simulated annealing algorithms. ” Water Resource Res.VOL. 35,NO. 3, pp.767-773. 1999
Wang, Q. J. ” The genetic algorithm and its application to calibrating conceptual rainfall-runoff models. “Water Resources Res. VOL.27,NO.9. 2467-2471.1991.
Wang, Q. J. “Using genetic algorithms to optimise model parameters .” Environmemtal Modeling&Software, Vol. 12. No. 1. pp.27-34.1997.
Whitley, D. “The GENITOR algorithm and selection pressure: why rank-based allocation of reproductive trials is best.” Proceedings of the Third International Conference on Genetic Algorithms, pp:116-121, 1989
Wright , M.H. “Direct search methods: once scorned, now respectable.”
In D. F. Griffiths and G. A. Watson, editors, Numerical Analysis: Proceedings of the 1995 Dundee Biennial Conference in Numerical Analysis, pages 191-208, Harlow, United Kingdom, 1996. Addison-Wesley Longman.
Yapo, P. O. , H. V. Gupta and S. Sorooshian, “Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data.” Department of Hydrology and Water Resources, The University of Arizona , Tucson,AZ 85721,USA Journal of Hydrology 181 pp:23-48.1996.
Zhao, R. J., Y. L. Zhuang, L. R. Fang, X. R. Liu and Q. S. Zhang, ”The Xinanjiang Model, in Hydrological Forecasting, Proceedings of the Oxford Symposium.”, IAHS Publ. 129 ,1980