| 研究生: |
鄭子煇 Zheng, Zi-Hui |
|---|---|
| 論文名稱: |
自升式平台船基腳於砂性海床貫入行為研究 Finite Element Analysis of Spudcan Penetration in Homogeneous Sandy Seabed Soil |
| 指導教授: |
郭玉樹
Kuo, Yu-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 離岸風機 、自升式平台船 、支撐基腳 、影響範圍 |
| 外文關鍵詞: | offshore wind, Jack-up, spudcan, influence range |
| 相關次數: | 點閱:113 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
自升式平台船為離岸風機設置普遍使用的大型船機具,透過支撐基腳站立於海床,平台船身將抬升超過海平面,避免波浪侵襲,增加施工穩定性與作業時間。由於自升式平台船站立於極疏鬆砂土時可能發生基腳貫穿剪力破壞,造成貫入深度較大致使海事施工作業時間拉長甚至自升式平台船毀損,亦或是站立於緊密砂土時可能產生一般剪力破壞隆起影響周遭結構物穩定性,為避免上述問題需在自升式平台船施工前進行承載力與影響範圍評估。但現有規範如SNAME(2008)僅以淺基礎承載力公式評估支撐基腳貫入海床土壤承載力與深度,因此本研究以有限元素模型分析支撐基腳貫入與提腿期間周遭海床土壤行為,並搭配Coupled Eulerian-Lagrangian method解決支撐基腳貫入時土壤大變形(Large deformation)問題。
本研究首先將數值模型貫入深度與承載力計算成果與模型試驗成果比較進行模型驗證,顯示貫入緊密程度較高砂土成果與模型試驗較為吻合,且SNAME(2008)建議之計算方式明顯低估緊密程度疏鬆以上之砂土承載力。接著針對不同支撐基腳尺寸部分進行參數分析,本研究模型成果顯示支撐基腳承載力、地形影響範圍、土體性質影響範圍皆與支撐基腳直徑呈現正相關。本研究另參考先導型離岸風場場址鑽孔資料選定模型土壤參數,分析貫入不同緊密程度砂土及提腿造成之地形、水平應力、土體性質影響範圍,緊密程度較高之砂土明顯有較大之地形、土體性質影響範圍。
最後本研究以彰濱風場土壤條件以及台灣現有自升式平台船進行案例分析,說明較大尺寸之支撐基腳達預壓載重時貫入深度較淺,足以提供自升式平台船更多施工彈性,而較小尺寸支撐基腳與無基腳支撐腿則會造成較小地形變化影響區域,但無基腳支撐腿可能產生較大之土壤性質改變區域。
SUMMARY
Spudcan for offshore mobile drilling rigs are large saucer-shaped foundations that can penetrate into the seabed to stabilize the rig in position. However, the current guideline such as SNAME (2008) only assess bearing capacity and penetration depth by shallow foundation bearing capacity formula, so this study establish the finite element model to analyze the seabed soil behavior during spudcan penetration and extraction ,also solve the problem of large deformation when the spudcan penetration by using Coupled Eulerian-Lagrangian method.
In this study, spudcan bearing capacity calculated by numerical model is compared with the results of the model test for the numerical model verification, it shows that numerical model and model test match more well when sand is more dense, besides model verification illustrate that the shallow foundation bearing capacity formula suggested by SNAME(2008) underestimate the bearing capacity. After model verification, parameter study of different size spudcan shows that the bearing capacity of the spudcan, the influence range of the terrain, and the influence of the soil properties are positively correlated with the diameter of the spudcan. In this study, the soil parameters of model are obtained by referring to the drilling data of the Taiwan pilot offshore wind farm, and input these soil parameters from different relative density sand to numerical model then access the bearing capacity of the spudcan, the influence range of the terrain, and the influence of the soil properties. From the parameter study of relative density sand, it shows that sandy soil with a higher degree of relative density has a greater range of terrain effects.
Anandro Amellonado(2016) “Finite Element Analysis of Spudcan Penetration in Homogeneous and Two Layered Soil Deposits”, Master Thesis, Delft University of Technology.
Cassidy, M., and Houlsby, G. (2002). “Vertical bearing capacity factors for conical footings on sand,” Géotechnique, Vol. 52, No. 9, pp. 687-692.
Cassidy, M. J., Quah, C. K., and Foo, K. S. (2009). “Experimental investigation of the reinstallation of spudcan footings close to existing footprints,” Journal of geotechnical and geoenvironmental engineering, Vol. 135, No. 4, pp. 474-486.
C F Leung, C. T. G., ; Y K Chow (2007). “Shear Strength Changes Within Jack-up Spudcan Footprint,” The International Society of Offshore and Polar Engineers, Lisbon, Portugal,
Hossain, M., Hu, Y., and Randolph, M. (2003). “Spudcan foundation penetration into uniform clay,” Proceedings of the The Thirteenth International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers.
Hossain, M., and Randolph, M. (2010). “Deep-penetrating spudcan foundations on layered clays: centrifuge tests,” Géotechnique, Vol. 60, No. 3, pp. 157-170.
Hossain, M., and Stainforth, R. (2016). “Perforation drilling for easing spudcan–footprint interaction issues,” Ocean Engineering, Vol. 113, pp. 308-318.
Hossain, M., Zheng, J., and Huston, A. (2015). “Effect of spudcan geometry on penetration and extraction resistance in clay,” Géotechnique, Vol. 65, No. 2, pp. 147-154.
Hossain, M. S., and Dong, X. (2013). “Extraction of spudcan foundations in single and multilayer soils,” Journal of geotechnical and geoenvironmental engineering, Vol. 140, No. 1, pp. 170-184.
Hossain, M. S., Hu, Y., Randolph, M. F., and White, D. J. (2005). “Limiting cavity depth for spudcan foundations penetrating clay,” Géotechnique, Vol. 55, No. 9, pp. 679-690.
Hossain, M. S., and Randolph, M. F. (2009). “Effect of strain rate and strain softening on the penetration resistance of spudcan foundations on clay,” International Journal of Geomechanics, Vol. 9, No. 3, pp. 122-132.
Hossain, M. S., and Randolph, M. F. (2009). “New mechanism-based design approach for spudcan foundations on single layer clay,” Journal of geotechnical and geoenvironmental engineering, Vol. 135, No. 9, pp. 1264-1274.
Hossain, M. S., Randolph, M. F., Hu, Y., and White, D. J. (2006). “Cavity Stability and Bearing Capacity of Spudcan Foundations on Clay,” Offshore Technology Conference,
Hossain, M. S., and Stainforth, R. (2016). “Perforation drilling for easing spudcan-footprint interaction issues,” Ocean Engineering, Vol. 113, pp. 308-318.
Hui, P., Wang, D., Cassidy, M., and Yang, Q. (2013). “Large deformation analysis of spudcan penetration into sand overlying normally consolidated clay,” Constitutive Modeling of Geomaterials, pp. 723-733.
Kohan, O., Cassidy, M. J., Gaudin, C., and Bienen, B. (2016). “Experimental Investigation of the Effect of Cyclic Loading on Spudcan Extraction,” Journal of Offshore Mechanics and Arctic Engineering, Vol. 138, No. 2, pp. 021301.
Kohan, O., Gaudin, C., Cassidy, M. J., and Bienen, B. (2014). “Predicting Spudcan Extraction Resistance in Soft Clay,” Geotech. Eng. J. SEAGS AGSSEA, Vol. 45, No. 4, pp. 52-61.
Kohan, O., Gaudin, C., Cassidy, M. J., and Bienen, B. (2014). “Spudcan extraction from deep embedment in soft clay,” Applied Ocean Research, Vol. 48, pp. 126-136.
Kong, V., Cassidy, M. J., and Gaudin, C. (2015). “Failure mechanisms of a spudcan penetrating next to an existing footprint,” Theoretical and Applied Mechanics Letters, Vol. 5, No. 2, pp. 64-68.
Lyamin, A., Salgado, R., Sloan, S., and Prezzi, M. (2007). “Two-and three-dimensional bearing capacity of footings in sand,” Géotechnique, Vol. 57, No. 8, pp. 647-662.
Mao, D.-F., Zhang, M.-H., Yu, Y., Duan, M.-L., and Zhao, J. (2015). “Analysis of spudcan–footprint interaction in a single soil with nonlinear FEM,” Petroleum Science, Vol. 12, No. 1, pp. 148-156.
Patrick Gütz (2012) “Finite element analysis of spudcan footing penetration”, Doctor Thesis, Leibniz University Hannover.
Purwana, O. A., Leung, C., Chow, Y., and Foo, K. (2005). “Influence of base suction on extraction of jack-up spudcans,” Géotechnique, Vol. 55, No. 10, pp. 741-753.
Purwana, O. A (2006) “Centrifuge model study on spudcan extraction in soft clay”, Master Thesis, National University of Singapore.
Purwana, O. A. (2009). “An assessment of jack up spudcan extraction.”
Qiu, G., and Grabe, J. (2012). “Numerical simulation of the deep penetration process of spudcans into sand overlying clay using the extended hypoplastic models,” Proceedings of the The Twenty-second International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers.
Qiu, G., and Henke, S. (2011). “Controlled installation of spudcan foundations on loose sand overlying weak clay,” Marine structures, Vol. 24, No. 4, pp. 528-550.
Qiu, G., Henke, S., and Grabe, J. (2009). “Applications of coupled Eulerian–Lagrangian method to geotechnical problems with large deformations,” Proceedings of the Proceeding of SIMULIA customer conference, pp. 420-435.
Qiu, G., Henke, S., and Grabe, J. (2010). “3D FE analysis of the installation process of spudcan foundations,” Proceedings of the Proceedings of the 2nd International Symposium on Frontiers in Offshore Geotechnics (ISFOG), Perth, Australia, pp. 685-690.
Qiu, G., Henke, S., and Grabe, J. (2011). “Application of a Coupled Eulerian–Lagrangian approach on geomechanical problems involving large deformations,” Computers and Geotechnics, Vol. 38, No. 1, pp. 30-39.
Randolph, M. F., Wang, D., Zhou, H., Hossain, M., and Hu, Y. (2008). “Large deformation finite element analysis for offshore applications,” Proceedings of the Proceedings of the12th International Conference of International Association for Computer Methods and Advances in Geomechanics, Goa, India, pp. 1-6.
Tan, X., Guo, J., and Lu, C. (2006). “Effect of spudcan penetration on neighboring existing pile,” Proceedings of the The Sixteenth International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers.
Teh, K., Leung, C., Chow, Y., and Handidjaja, P. (2010). “Leg penetration analysis of jack-up rig installation over existing footprints,” Proceedings of the The Twentieth International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers.
Tho, K. K., Leung, C. F., Chow, Y. K., and Swaddiwudhipong, S. (2013). “Eulerian finite element simulation of spudcan–pile interaction,” Canadian Geotechnical Journal, Vol. 50, No. 6, pp. 595-608.
Truong, P. (2012). “Impact of spudcan footprints on a gravity base structure,” Australian Geomechanics, Vol. 47, No. 2, pp. 103.
White, D., Teh, K., Leung, C., and Chow, Y. (2008). “A comparison of the bearing capacity of flat and conical circular foundations on sand,” Géotechnique, Vol. 58, No. 10, pp. 781.
Yi, J. T., Lee, F. H., Goh, S. H., Zhang, X. Y., and Wu, J.-F. (2012). “Eulerian finite element analysis of excess pore pressure generated by spudcan installation into soft clay,” Computers and Geotechnics, Vol. 42, pp. 157-170.
Young, A. G., Remmes, B. D., and Meyer, B. J. (1984). “FOUNDATION PERFORMANCE OF OFFSHORE JACK-UP DRILLING RIGS,” Journal of Geotechnical Engineering-Asce, Vol. 110, No. 7, pp. 841-859.
Zhou, X., Chow, Y., and Leung, C. (2009). “Numerical modelling of extraction of spudcans,” Géotechnique, Vol. 59, No. 1, pp. 29-39.
Rigzone(2012). Offshore Rig Utilization Reports.[Online] Avalible at:
http://www.rigzone.com/data/utilization_trends.asp
蔡潔忞、陳景文、郭玉樹、許惠婷(2014),「彰濱風場液化潛能初步評估」,地工技術,第142 期,第69-78 頁。
方永壽、李承祐、劉政、林慶祐 (2014),「自升式風機安裝船支撐基腳承載力模型試驗」,地工技術論文,第142期,第79-88頁。
鍾繼賢(2015),「砂土密度對風機安裝船支撐基腳承載力影響」,碩士論文,國立交通大學土木所,新竹。
陳聖麟(2016),「互層砂土對自升式平台船基腳支承力影響」,碩士論文,國立交通大學土木所,新竹。
台灣電力公司(2015),「離岸風力發電第一期計畫可行性研究」。