| 研究生: |
羅中冠 Luo, Jung-Guan |
|---|---|
| 論文名稱: |
相容於OCP之可規劃性匯流排架構設計 OCP-Compliant Configurable Bus Architecture Design |
| 指導教授: |
謝明得
Shieh, Ming-Der |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 匯流排架構設計 、可規劃性 、開放核心協定 (OCP) |
| 外文關鍵詞: | bus architecture design, configurable, Open Core Protocol (OCP) |
| 相關次數: | 點閱:109 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在單晶片系統(SoC)的發展中,系統設計不僅朝向多功能整合發展,也針對產品上市時間有了越來越嚴苛的要求。然而在眾多設計應用之下,現今被廣泛應用的 AMBA 2.0 AHB 或是其他不同規格匯流排所能提供之傳輸效能已逐漸不符需求,使得匯流排存取之過程常造成單晶片系統中的瓶頸。為此我們採用由OCP-IP 所規劃之新一代晶片間傳輸介面,開放核心傳輸協定(Open Core Protocol),實作出與其相容之模擬環境與硬體架構。
本論文依據系統中常見的不同應用,將 OCP 所制定的諸多功能分為五種系統設定(Profile),使得系統整合者能夠選擇最適合之系統傳輸架構以節省硬體面積。其中為了提供較典型連結共享式匯流排(Share-link Bus)或稱為集中仲裁式匯流排(Centralized Arbitration Bus)有更大的傳輸量,我們也設計了縱橫式交換(Crossbar)連接架構,並可允許各元件進行點對點(Point-to-Point)的傳輸。此外,對於矽智財(IP)與匯流排間的可連接性(Interoperability)問題,我們對於傳輸介面增加了對應的插槽(Socket)模組。經由插槽模組對傳輸訊號的處理,IP 設計者只
需定義本身需求之部分 OCP 訊號,即可透過插槽模組與系統溝通。因此可將設計 IP 外覆模組(Wrapper)之複雜度轉移至插槽模組中,以期能增加系統上連接元件之彈性並縮短系統整合時程。
藉由 Synopsys 所提供之 VIP軟體,我們進行了系統驗證以及分析不同介面設定下所能提供的傳輸效能。根據 VIP 所提供的模擬結果,所提出之匯流排架構在高傳輸量之系統設定下與相容 AHB之系統設定相較,能減少至少 46% 的傳輸時間。本論文所提出之硬體架構以Verilog 硬體描述語言實現,並以 0.13 微米CMOS 製程進行合成,電路最高操作速度可達 333 MHz。
The trend of integrating more and more components and functionalities in system-on-a-chip (SoC) design has made it a very challenging task. The need of fitting the time-to-market of a product also imposes strict requirements on system development. It is not surprising today that a highly integrated commercial product can support various types of applications such as multimedia and wireless communication and so on. This implies that the commonly used bus protocols like AMBA 2.0 AHB may not be suitable for applications demanding high data bandwidth, and may become a bottleneck of system integration. The Open Core Protocol (OCP) is a new specification of bus transaction interface for facilitating the system integration. This thesis explores various OCP-compliant configurable bus architecture designs which are verified via an CP-compliant simulation environment.
To comply with different applications, we classify the features drawn in OCP into five architecture profiles. Users can choose the most appropriate one for their applications to save hardware requirements. In addition to developing building blocks for the typical share-link bus, we also consider the crossbar structure for obtaining a higher transmission bandwidth and supporting point-to-point communication between IPs. For the interoperability issues, we introduce the IP-specific socket module in the bus interface so that IP providers can define their own interface configuration and only focus on the necessary OCP signals. By moving all the details of hooking up the bus into the socket design, it becomes much easier and flexible for IP integration.
The proposed hardware architectures have been successfully implemented with Verilog HDL and synthesized using 0.13 贡m CMOS technology. Using Synopsys VIP tools, we built the simulation environment to verify our development and analyzed the resulting performance for different configurations. Experimental results show that the proposed high-performance bus architecture profile can reduce the transmission time by 46% as compared to the AHB-compliant bus architecture profile, and can operate in 333MHz.
[1] OCP-IP, http://www.ocpip.org/home
[2] Open Core Protocol Specification, Open Core Protocol International Partnership (OCP-IP), 2007.
[3] ARM , http://www.arm.com/products/solutions/AMBAHomePage.html
[4] AMBA AXI Protocol Specification, ARM , 2003.
[5] AMBA Specification, ARM , 1999.
[6] Synopsys , http://www.synopsys.com/home.aspx
[7] Synopsys , DesignWare Open Core Protocol (OCP) Verification IP for HDL Users, 2008.
[8] Synopsys , DesignWare VIP OCP - Tutorial for SystemVerilog/VMM Testbench Users, 2006.
[9] Sonics , http://www.sonicsinc.com/
[10] L. Benini and G. De Micheli, “Neworks-on-Chips: A New SoC Paradigm,”IEEE Computers, vol. 35, no. 1, pp. 70-78, Jan. 2002.
[11] P. P. Partha, C. Grecu, M. Jones, A. Ivanov, and R. Saleh, “PerformanceEvaluation and Design Trade-offs for Network-on-Chip Interconnect Architectures,”IEEE Computers, vol. 54, no. 8, pp. 1025-1040, Aug. 2005.
[12] T. Bjerregaard and S. Mahadevan, “A Survey of Research and Practices of Network-on-Chip,”ACM Computing Surveys, vol. 38, no. 1, pp. 1-51, Mar. 2006
[13] E. Salminen, A. Kulmala, and T. D. Hamalainen, “Survey of Network-on-chipProposals,”White Paper, OCP-IP, Mar. 2008.
[14] W. J. Dally, “Virtual-channel Flow Control,?IEEE Trans. Parallel and Distributed Systems, vol. 3, no. 2, pp. 194-205, Mar. 1992.
[15] Y. Tamir and H. C. Chi, “Symmetric Crossbar Arbiters for VLSI Communication Switches,”IEEE Trans. Parallel and Distributed Systems, vol. 4, no. 1, pp. 13-27, Jan. 1993.
[16] T. Bjerregaard and J. Sparsø, “A Router Architecture for Connection-Oriente Service Guarantees in the MANGO Clockless Network-on-Chip,“ Proc. Conf. Design, Automation, and Test in Eur. (DATE), Mar. 2005, pp. 1226-1231.
[17] T. Bjerregaard, S. Mahadevan, R. G. Olsen, and J. Sparsø, “An OCP Complian Network Adapter for GALS-based SoC Design Using the MANGO Network-on-Chip,“Proc. IEEE Inter. Symp. System-on-Chip (ISSoC), Nov. 2005, pp. 171-174.
[18] T. Bjerregaard and J. Sparsø, “Pactizing OCP Transactions in the MANGO Network-on-Chip,”Proc. IEEE. Conf. Digital System Design (DSD), Aug. 2006, pp. 657-664.
[19] T. Bjerregaard and J. Sparsø, “Implemeation of Guaranteed Services in the MANGO Clockless Network-on-Chip,?IET Comput. Digit. Tech., vol. 153, no. 4, pp. 217-229, July 2006.
[20] H. W. Wang, C. S. Lai, C. F. Wu, S. A. Hwang, and Y. H. Lin, “On-chipInterconnection Design and SoC Integration with OCP,”Proc. IEEE Int. Symp. VLSI Design, Automation, and Test (DAT), Apr. 2008, pp. 25-28.
[21] L. Cai and D. Gajski, “Transacon Level Modeling: An Overview,”Proc. First IEEE/ACM/IFIP Int. Conf. Hardware/Software Codesign and System Synthesis, Oct. 2003, pp. 19-24.
[22] Y. L. Huang, C. Y. Wang, R. Yeh, S. C. Chang, and Y. C. Chen, ”Language-Based High Level Trasaction Extraction on On-chip Buses,”Proc. Int. Symp. Quality Electronic Design (ISQED), Mar. 2006, pp. 231-236
[23] A. M. Amory, K. Goossens, E. J. Marinissen, M. Lubaszewski, and F. Moraes, “Wrapper Design for the Reuse of A Bus Network-on-Chip, or Other Functional Interconnect as Test Access Mechanism”,IET Comput. Digit. Tech., vol. 1, no. 3, pp. 197-206, Jan. 2007.
[24] R. G. Olsen, OCP Based Adapter for Network-on-Chip, Master’s Thesis,Informatics and Mathematical Modeling Dept., Technical University of Denmark, Feb. 2005.