| 研究生: |
徐從瑋 Hsu, Tsung-Wei |
|---|---|
| 論文名稱: |
具開路電壓最大功率追蹤法之光能獵能器設計 Design of Photovoltaic Energy Harvester with Fractional Open Circuit Voltage Based Maximum Power Point Tracking Circuit |
| 指導教授: |
魏嘉玲
Wei, Chia-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 光能 、最大功率追蹤 、開路電壓法 、升壓型轉換器 |
| 外文關鍵詞: | Photovoltaic, Energy harvesting, FOCV, MPPT, Boost converter |
| 相關次數: | 點閱:127 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來物聯網一詞越來越火紅,相關科技與技術也越來越進步,獵能技術即是其中一例。本論文提出一個可操作在室內光源照度下,用以獵取光能的升壓型轉換器,並設計以電路方式來實現開路電壓最大功率追蹤演算法,藉由調變功率電晶體的導通時間,使太陽能電池能操作在其最大功率輸出點,並將獵取來的能量存至超級電容中。
本晶片採用台灣積體電路公司(TSMC)0.18μm 1P6M混和訊號製程製作,以32 S/B封裝,包含PAD部分的晶片總面積為900×930 μm2。所量測得之系統最佳的轉換效率為93.5%,最佳的追蹤效率為98.6%,最佳的總效率為91.8%。
A photovoltaic energy harvester, which is basically a boost converter, is proposed in this thesis. In order to harvest energy from photovoltaic cell, the proposed converter adopts the fractional open-circuit voltage, which is one of the maximum power point tracking algorithm. The proposed system was fabricated by using TSMC 0.18μm 1P6M mixed-signal process. The highest power conversion efficiency of the converter is 93.5%, the highest tracking efficiency of the MPPT circuit is 98.6 %, and the highest total efficiency of the system is 91.8 %.
[1] K. Ashton, ‘‘Internet of Things,’’ RFID J., Jun. 2009, [Online]. Available: http://www.rfidjournal.com/article/print/4986
[2] G. Kortuem, F. Kawsar, D. Fitton, and V. Sundramoorthy, “Smart objects as building blocks for the internet of things”, IEEE Internet Comput., vol. 14, no. 1, pp. 44-51, 2010.
[3] R. D. Prabha, G. A. Rincón-Mora, and S. Kim, “Harvesting circuits for miniaturized photovoltaic cells ,” in Proc. IEEE Int. Symp. On Circuit and Syst., May 2011, pp. 309–312.
[4] A. H. ALQahtani, M. S. Abuhamdeh, and Y. M. Alsmadi, “A Simplified and Comprehensive Approach to Characterize Photovoltaic System Performance,” in Proc. IEEE Energytech conf., May 2012, pp. 1–6.
[5] B. J. Stanbery, “Copper Indium Selenides and Related Materials for Photovoltaic Devices,” Crit. Rev. Solid State and Mater. Sci., vol. 27, no. 2, pp. 73–117, Jan. 2002.
[6] A. Gurung, H. Elbohy, D. Khatiwada, A. F. Mitul, and Q. Qiao, “A Simple Cost-Effective Approach to Enhance Performance of Bifacial Dye-Sensitized Solar Cells,” IEEE J. Photovoltaics, vol. 6, no. 4, pp. 912–917, May 2016.
[7] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 47),” Progr. Photovoltaics: Res. Appl., vol. 24, no. 1, pp. 3–11, Jan. 2016.
[8] W. S. Wang, T. O’Donnel, L. Ribetto, B. O’Flynn, M.Hayes, and C. O’Mathuna, “Energy harvesting embedded wireless sensor system for building environment applications,” in Int. Conf. Wireless VITAE, May 2009, pp. 36–41.
[9] S. Agarwal and M. Jamil, “A Comparison of Photovoltaic Maximum Power Point Techniques,” in Proc. 2012 Annu. IEEE, India conf., Dec. 2015, pp. 1–6.
[10] T. Esram and P. L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Trans. Energy Convers., vol. 22, no. 2, pp. 439–449, Jun. 2007.
[11] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. Power Electron., Vol. 20, no. 4, pp. 963–973, Jul. 2005.
[12] F. Liu, S. Duan, F. Liu, B. Liu, and Y. Kang, “A variable step size INC MPPT method for PV systems,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2622–2628, Jul. 2008.
[13] O. Lopez-Lapena and M. T. Penella, “Low-power FOCV MPPT controller with automatic adjustment of the sample & hold,” Electronics Letters, vol. 48, no. 20, pp. 1301–1303, Sep. 2012.
[14] V. R. Scarpa , S. Buso , and G. Spiazzi, “ Low-complexity MPPT technique exploiting the PV module MPP locus characterization,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1531–1538, May 2009.
[15] G. W. Hart, H. M. Branz, and C. H. Cox, “Experimental tests of open-loop maximum-power-point tracking techniques for photovoltaic arrays,” Solar Cells, vol. 13, no. 2 pp. 185–195, Dec. 1984.
[16] B. Sahu and G. A. Rincón-Mora, “An accurate, low voltage, CMOS switching power supply with adaptive on-time pulse-frequency modulation (PFM) control,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 2, pp. 312–321, Feb. 2007.
[17] H. H. Wu, “Design of an Adaptive Peak-Inductor-Current Controlled Pulse Frequency Modulated Boost Converter with a Near-Threshold Startup Voltage,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Jul. 2012.
[18] F. I. Simjee and P. H. Chou, “Efficient Charging of Supercapacitors for Extended Lifetime of Wireless Sensor Nodes,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1526–1536, May 2008.
[19] S. Y. Wang, “A Boost Converter with Maximum Power Point Tracking for Solar Photovoltaic Energy Harvesting,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Jun. 2013.
[20] D. L. Tsai, “A Low-Power-Consumption Boost Converter with Maximum Power Point Tracking Algorithm for Indoor Photovoltaic Energy Harvesting,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Jul. 2014.
[21] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” IEEE J. Solid-State Circuit, vol. 45, no. 4, pp. 731–740, Apr. 2010.
[22] Y. Qiu, C. V. Liempd, B. O. h. Veld, P. G Blanken, and C. V. Hoof, “5μW-to-10mW Input Power Range Inductive Boost Converter for Indoor Photovoltaic Energy Harvesting with Integrated Maximum Power Point Tracking Algorithm,” in IEEE Int. Solid-State Circuits Conf. Dig Tech. Papers, Feb 2011, pp. 118-120.
[23] J. Kim, J. Kim and C. Kim, “A regulated charge pump with a low-power integrated optimum power point tracking algorithm for indoor solar energy harvesting”, IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 12, pp. 802-806, 2011
[24] E. Dallago, A. Barnabei, A. Liberale, P. Malcovati, and G. Venchi, “An interface circuit for low-voltage low-current energy harvesting systems”, IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1411-1420, Mar. 2015
[25] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.
校內:2021-09-02公開