簡易檢索 / 詳目顯示

研究生: 徐從瑋
Hsu, Tsung-Wei
論文名稱: 具開路電壓最大功率追蹤法之光能獵能器設計
Design of Photovoltaic Energy Harvester with Fractional Open Circuit Voltage Based Maximum Power Point Tracking Circuit
指導教授: 魏嘉玲
Wei, Chia-Ling
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 80
中文關鍵詞: 光能最大功率追蹤開路電壓法升壓型轉換器
外文關鍵詞: Photovoltaic, Energy harvesting, FOCV, MPPT, Boost converter
相關次數: 點閱:127下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來物聯網一詞越來越火紅,相關科技與技術也越來越進步,獵能技術即是其中一例。本論文提出一個可操作在室內光源照度下,用以獵取光能的升壓型轉換器,並設計以電路方式來實現開路電壓最大功率追蹤演算法,藉由調變功率電晶體的導通時間,使太陽能電池能操作在其最大功率輸出點,並將獵取來的能量存至超級電容中。
    本晶片採用台灣積體電路公司(TSMC)0.18μm 1P6M混和訊號製程製作,以32 S/B封裝,包含PAD部分的晶片總面積為900×930 μm2。所量測得之系統最佳的轉換效率為93.5%,最佳的追蹤效率為98.6%,最佳的總效率為91.8%。

    A photovoltaic energy harvester, which is basically a boost converter, is proposed in this thesis. In order to harvest energy from photovoltaic cell, the proposed converter adopts the fractional open-circuit voltage, which is one of the maximum power point tracking algorithm. The proposed system was fabricated by using TSMC 0.18μm 1P6M mixed-signal process. The highest power conversion efficiency of the converter is 93.5%, the highest tracking efficiency of the MPPT circuit is 98.6 %, and the highest total efficiency of the system is 91.8 %.

    第一章 簡介 1 1.1 研究動機 1 1.2 論文架構 2 第二章 太陽能電池基本介紹與最大功率點追蹤演算法 3 2.1 太陽能電池基本介紹 3 2.1.1 大陽能電池的等效電路 3 2.1.2 典型的大陽能電池種類 6 2.1.3 操作的光源環境條件 8 2.2 最大功率追蹤演算法 9 2.2.1 擾動觀察法 10 2.2.2 增量電導法 11 2.2.3 短路電流法 13 2.2.4 開路電壓法 14 2.2.5 比較 15 第三章 系統架構與電路設計 16 3.1 系統架構簡介 16 3.1.1 升壓型轉換器(Boost Converter) 17 3.1.2 能量儲存元件(Energy Storage Element) 22 3.2 電路設計與功能介紹 23 3.2.1 功率級(Power Stage) 24 3.2.2 最高電位選擇器(Supply Voltage Selector) 24 3.2.3 參考電壓產生器(Reference Voltage Generator) 26 3.2.4 取樣時脈產生器(Sampling Clock Generator) 27 3.2.5 開路電壓取樣電路(Open Circuit Voltage Sampling Circuit) 28 3.2.6 最大功率追蹤與脈波頻率調變控制器(Maximum Power Point Tracking and PFM Controller) 30 3.2.7 零電流偵測電路(Zero Current Detector) 33 3.2.8 充電偵測電路(Charging Detector) 34 3.2.9 延遲時間控制器(Dead-time Controller)與緩衝器(Buffer) 36 3.2.10 反震盪電路(Anti-ringing Circuit) 37 3.3 系統運作模式 38 3.3.1 啟始狀態(Startup State) 38 3.3.2 閉迴路狀態(Closed-loop State) 39 第四章 模擬結果與佈局考量 41 4.1 模擬結果 41 4.1.1 啟始狀態模擬 41 4.1.2 閉迴路狀態模擬 43 4.1.3 效率 47 4.2 佈局(Layout) 50 4.2.1 佈局考量 51 4.2.2 打線圖 53 第五章 量測結果 56 5.1 量測環境 56 5.2 量測結果 59 5.2.1啟始狀態量測波形 59 5.2.2閉迴路狀態量測波形 60 5.2.3光源照度變動的量測波形 65 5.3 量測效率 67 5.4 應用相關之量測 70 5.4.1 晶片對超級電容充電速度之影響 70 5.4.2 量測應用端之抽載情形 71 5.4.3系統正常操作的最低照度 72 5.5 規格比較表 74 第六章 結論與未來展望 77 參考文獻 78

    [1] K. Ashton, ‘‘Internet of Things,’’ RFID J., Jun. 2009, [Online]. Available: http://www.rfidjournal.com/article/print/4986
    [2] G. Kortuem, F. Kawsar, D. Fitton, and V. Sundramoorthy, “Smart objects as building blocks for the internet of things”, IEEE Internet Comput., vol. 14, no. 1, pp. 44-51, 2010.
    [3] R. D. Prabha, G. A. Rincón-Mora, and S. Kim, “Harvesting circuits for miniaturized photovoltaic cells ,” in Proc. IEEE Int. Symp. On Circuit and Syst., May 2011, pp. 309–312.
    [4] A. H. ALQahtani, M. S. Abuhamdeh, and Y. M. Alsmadi, “A Simplified and Comprehensive Approach to Characterize Photovoltaic System Performance,” in Proc. IEEE Energytech conf., May 2012, pp. 1–6.
    [5] B. J. Stanbery, “Copper Indium Selenides and Related Materials for Photovoltaic Devices,” Crit. Rev. Solid State and Mater. Sci., vol. 27, no. 2, pp. 73–117, Jan. 2002.
    [6] A. Gurung, H. Elbohy, D. Khatiwada, A. F. Mitul, and Q. Qiao, “A Simple Cost-Effective Approach to Enhance Performance of Bifacial Dye-Sensitized Solar Cells,” IEEE J. Photovoltaics, vol. 6, no. 4, pp. 912–917, May 2016.
    [7] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 47),” Progr. Photovoltaics: Res. Appl., vol. 24, no. 1, pp. 3–11, Jan. 2016.
    [8] W. S. Wang, T. O’Donnel, L. Ribetto, B. O’Flynn, M.Hayes, and C. O’Mathuna, “Energy harvesting embedded wireless sensor system for building environment applications,” in Int. Conf. Wireless VITAE, May 2009, pp. 36–41.
    [9] S. Agarwal and M. Jamil, “A Comparison of Photovoltaic Maximum Power Point Techniques,” in Proc. 2012 Annu. IEEE, India conf., Dec. 2015, pp. 1–6.
    [10] T. Esram and P. L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Trans. Energy Convers., vol. 22, no. 2, pp. 439–449, Jun. 2007.
    [11] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. Power Electron., Vol. 20, no. 4, pp. 963–973, Jul. 2005.
    [12] F. Liu, S. Duan, F. Liu, B. Liu, and Y. Kang, “A variable step size INC MPPT method for PV systems,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2622–2628, Jul. 2008.
    [13] O. Lopez-Lapena and M. T. Penella, “Low-power FOCV MPPT controller with automatic adjustment of the sample & hold,” Electronics Letters, vol. 48, no. 20, pp. 1301–1303, Sep. 2012.
    [14] V. R. Scarpa , S. Buso , and G. Spiazzi, “ Low-complexity MPPT technique exploiting the PV module MPP locus characterization,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1531–1538, May 2009.
    [15] G. W. Hart, H. M. Branz, and C. H. Cox, “Experimental tests of open-loop maximum-power-point tracking techniques for photovoltaic arrays,” Solar Cells, vol. 13, no. 2 pp. 185–195, Dec. 1984.
    [16] B. Sahu and G. A. Rincón-Mora, “An accurate, low voltage, CMOS switching power supply with adaptive on-time pulse-frequency modulation (PFM) control,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 2, pp. 312–321, Feb. 2007.
    [17] H. H. Wu, “Design of an Adaptive Peak-Inductor-Current Controlled Pulse Frequency Modulated Boost Converter with a Near-Threshold Startup Voltage,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Jul. 2012.
    [18] F. I. Simjee and P. H. Chou, “Efficient Charging of Supercapacitors for Extended Lifetime of Wireless Sensor Nodes,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1526–1536, May 2008.
    [19] S. Y. Wang, “A Boost Converter with Maximum Power Point Tracking for Solar Photovoltaic Energy Harvesting,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Jun. 2013.
    [20] D. L. Tsai, “A Low-Power-Consumption Boost Converter with Maximum Power Point Tracking Algorithm for Indoor Photovoltaic Energy Harvesting,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Jul. 2014.
    [21] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” IEEE J. Solid-State Circuit, vol. 45, no. 4, pp. 731–740, Apr. 2010.
    [22] Y. Qiu, C. V. Liempd, B. O. h. Veld, P. G Blanken, and C. V. Hoof, “5μW-to-10mW Input Power Range Inductive Boost Converter for Indoor Photovoltaic Energy Harvesting with Integrated Maximum Power Point Tracking Algorithm,” in IEEE Int. Solid-State Circuits Conf. Dig Tech. Papers, Feb 2011, pp. 118-120.
    [23] J. Kim, J. Kim and C. Kim, “A regulated charge pump with a low-power integrated optimum power point tracking algorithm for indoor solar energy harvesting”, IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 12, pp. 802-806, 2011
    [24] E. Dallago, A. Barnabei, A. Liberale, P. Malcovati, and G. Venchi, “An interface circuit for low-voltage low-current energy harvesting systems”, IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1411-1420, Mar. 2015
    [25] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.

    無法下載圖示 校內:2021-09-02公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE