| 研究生: |
黃致銘 Huang, Chi-ming |
|---|---|
| 論文名稱: |
Mg0.95Ni0.05TiO3陶瓷介電特性及其微波應用之研究 Dielectric Properties and Applications of Mg0.95Ni0.05TiO3-based Ceramics at Microwave Frequencies |
| 指導教授: |
黃正亮
Huang, Cheng-Liang 施權峰 Shih, Chuan-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 陶瓷 、介電特性 |
| 外文關鍵詞: | ceramics, dielectric properties |
| 相關次數: | 點閱:50 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中將討論Mg0.95Ni0.05TiO3陶瓷材料的微波介電特性及材料的微結構。由實驗結果知Mg0.95Ni0.05TiO3在1350℃燒結四小時,可得到介電特性εr~17.2,Q×f~180,000 ( 9GHz ),τf ~-45 (ppm/℃)。為了使共振頻率之溫度係數(τf)趨近於零,因此藉由正與負的共振頻率之溫度係數的介電材料來達到平衡。其中,具負共振頻率之溫度係數的Mg0.95Ni0.05TiO3分別與Ca0.6La0.8/3TiO3 (εr ~109,Q×f~17,000,τf ~ +212 (ppm/℃))、La0.5Na0.5TiO3 (εr ~122,Q×f~9600,τf ~ +480 (ppm/℃))及Nd0.5Na0.5TiO3(εr ~98,Q×f~7200,τf ~ +260 (ppm/℃))三個正共振頻率之溫度係數的介電材料混相。
由實驗結果顯示,(1-x)Mg0.95Ni0.05TiO3-xCa0.6La0.8/3TiO3系統在x =0.15燒結溫度1325℃得到良好的介電特性; εr~24.61,Q×f~102,000,τf ~ -3.6 (ppm/℃); (1-x)Mg0.95Ni0.05TiO3-xLa0.5Na0.5TiO3系統在x =0.13燒結溫度1275℃得到介電特性; εr~23.22,Q×f~86,000,τf ~ +2.8 (ppm/℃); (1-x)Mg0.95Ni0.05TiO3-xNd0.5Na0.5TiO3系統在x =0.19燒結溫度1300℃的介電特性; εr ~25.61,Q×f~69,000,τf ~ -8 (ppm/℃)。
最後,以FR4、Al2O3以及自製陶瓷基板0.87MNT-0.13LNT,設計一個3階Butterworth 髮夾式帶通濾波器,中心頻率為2.4GHz,頻寬10%,並使用電磁全波模擬軟體IE3D,討論模擬與實作量測的差異。
The microwave dielectric properties and microstructure of Mg0.95Ni0.05TiO3 ceramic materials are investigated in this study. The Mg0.95Ni0.05TiO3 ceramic possesses an dielectric constant (εr ) of 17.2,a Q×f value of 180,000 ( GHz ),a temperature coefficient of resonant frequency(τf) of -45 (ppm/℃) sintering at 1350℃ for 4 hrs. In order to obtain a temperature-stable material, a method of combining a positive temperature coefficient of resonant frequency material with a negative one was examined in the present study. Mg0.95Ni0.05TiO3 mixed with Ca0.6La0.8/3TiO3 [εr ~109,Q×f~17,000,τf ~ +212 (ppm/℃)]、La0.5Na0.5TiO3 [εr~122,Q×f~9600,τf ~ +480 (ppm/℃)] and Nd0.5Na0.5TiO3[εr~98,Q×f~7200,τf ~ +260 (ppm/℃)], respectively.
The experimental results show that when x=0.15, (1-x)Mg0.95Ni0.05TiO3-xCa0.6La0.8/3TiO3 system obtain the dielectric properties: εr ~24.61,Q×f~102,000,τf ~ -3.6 (ppm/℃); when x=0.13, (1-x)Mg0.95Ni0.05TiO3-xLa0.5Na0.5TiO3 system obtain the dielectric properties: εr~23.22,Q×f~86,000,τf ~ +2.8 (ppm/℃); when x=0.19, (1-x)Mg0.95Ni0.05TiO3-xLa0.5Na0.5TiO3 system obtain the dielectric properties: εr ~25.61,Q×f~69,000,τf ~ -8 (ppm/℃).
Finally, we design a three order Butterworth band-pass filter with hairpin shape on various substrates (such as FR4, Al2O3, and 0.87MNT-0.13LNT). The center frequency is 2.4GHz, FBW is 10%, and using full wave E.M. simulatior IE3D to discuss the difference between simulation and measurement.
[1] J.-H. Sohn, Y. Inaguma, S.-O. Yoon, M. Itoh, T. Nakamura, S.-J. Yoonand H.-J Kim, “Microwave Dielectric Characteristics of Ilmenite-TypeTitanates with High Q Values”, J. Appl. phys., vol.33, pp.5466-5470,1994.
[2] C.-L. Huang, J.-T. Tsai, Y.-B. Chen, “Dielectric properties of (1-y)Ca1-xLa2x/3TiO3-y(Li,Nd)1/2TiO3 ceramic system at microwave frequency”, Materials Research Bulletin ,vol.36, pp.547–556,2001.
[3] C.-L. Huang, J.-J. Wang, “Microwave dielectric properties of (1 - x)(Mg0.95Co0.05)-
TiO3–xCa0.6La0.8/3TiO3 ceramics with V2O5 addition”, Solid-State Electronics, vol.50, pp.1349–1354,2006.
[4] H.Takahashi.,Y.Baba,.,K.Ezaki,Y.Okamoto,K.Shibata,K.Kuroki,S.Nakano, “Dielectric characteristics of (A .A )TiO3 Ceramics at Microwave Frequencies ”, Jpn.J.Appl.Phys.,vol. 30,No.9B, pp.2339-2342,1991.
[5] T. H., Baba, Y., Ezaki, K. and Ito, A., “High dielectric microwave materials and its application”, Sanyo Tech. Rev., 28, 104 (in Japanese),1996.
[6] 鄭景太, 淺談高頻低損失介電材料, 工業材料, 176期 90年8月.
[7] W. J. Huppmann, and G. Petzow, Sintering processes., New York: Plenum Pr-ess, pp. 189-202, 1979.
[8] F. V. Lenel, “Sintering in Presence of a Liquid Phase”, Trans. Am. Inst.Mining. Met. Engrs, pp.878-905, 1948.
[9] SCHAFFER SAXENA ANTOLOVICH SANDERS WARNER,“The Science and Design of Engineering Materials”,Chap3.
[10] 肖定全,陶瓷材料,新文京開發出版,p49-55,2003
[11] V. N. Eremenko, Y. V. Naidich, and I. Aienko, Liquid phase sintering., New York: Consultants Bureau, 1970, ch. 4.
[12] 翁敏航,射頻被動元件設計,東華書局,台灣,p126,1996
[13] L. A. Trinogga, Guo Kaizhou, and I. C. Hunter, Practical microstrip circuit design., UK: Ellis Horwood, 1991.
[14] David M. Pozar, Microwave engineering., Reading: Addison-Wesley, 1998
[15] R. A. Pucel, D. J. Masse, and C. E. Hartwig, “Losses in microstrip,” IEEE. Trans. Microwave Theory Tech., vol. MIT-16, pp. 342-350, Jun. 1968.
[16] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave filters impedance- mattching, networks, and coupling structures., New York: McGraw-Hill, 1980.
[17] V. Nalbandian, and W. Steenart, “Discontinunity in symmetric striplines due to impedance step and their compensations,” IEEE Trans. Microwave Theory Te-ch., vol. MTT-20, pp. 573-578, Sep. 1980.
[18] 張盛富,戴明鳳, 無線通信之射頻被動電路設計,全華出版社,1998.
[19] Darko Kajfez and Pierre Guillon, Dielectric Resonators, University of Mississippi.
[20] K. C. Gupta, R. Garg, I. Bahl, and E. Bhartis, Microstrip lines and slotlines, second edition., Boston: Artech House, 1996.
[21] J.-S.Hong, and M.-J.Lancaster,“Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters,” IEEE Trans. MicrowaveTheory Tech., vol. 44, pp. 2099-2109, Nov. 1996.
[22] Inder Bahl and Prakash Bhartia, Microwave solid state circuit design, chap6 John Wiley&Sons 1988.
[23] Peter A. Rizzi., Microwave Engineering Passive Circuits, chap9, Prentice Hall, 1988.
[24] 傅坤幅, 微波陶瓷材料介電特性量測,工業材料, 132期, 86年12月.
[25] P. Wheless and D. Kajfez, “The Use of Higher Resonant Modes in Measuring the Dielectric Constant of Dielectric Resonators,” IEEE MTT-S, Symposium Dig., pp.473-476, 1985.
[26] Y. Kobayashi and N. Katoh, “Microwave measurement of dielectric properties of low-loss materials by dielectric rod resonator method,” IEEE. Trans. Micr- owave Theory Tech., MTT-33, 586-592, 1985.
[27] Y. Kobayashi, and S. Tanaka, "Resonant modes of a dielectric resonator short-circuited at both ends by parallel conducting plates," IEEE. Trans. MicrowaveTheory Tech., MTT-28, 1077-1085, 1980.
[28] B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter range,” IEEE Trans. MTT, vol. MTTS, pp. 402-410, 1960.
[29] J. Helszajn, “Microwave Engineering: Passive, Active, and Non-reciprocal Circuits,” McGraw-Hill, 1992.
[30] D. Kajfez, “Computed model field distribution for isolated dielectric resonators,” IEEE. Trans. Microwave Theory Tech., vol. MTT-32, pp. 1609-1616, Dec. 1984.
[31] D. Kajfez, “Basic principle give understanding of dielectric waveguides and resonators,” Microwave System News., vol. 13, pp. 152-161, 1983.
[32] D. Kajfez, and P. Guillon, Dielectric resonators., New York: Artech House,1989.
[33] 吳朗, 電工材料,滄海書局,p72, 87年.
[34] J. S. Wong, “Microstrip tapped-line filter design,” IEEE Trans.Microwave Theory Tech.”, vol. MTT-27, pp. 44-50, Jan. 1979.
[35] International Telephone and Telegraph Corp., Reference Data for Radio Engineers, 6th Ed. Howard W. Sams Co., Inc.
[36] 吳政哲,”微波介電陶瓷材料之研製與應用”,國立成功大學電機工程系碩士論文,2000.
[37] B.D. Silverman, Phys. Rev., vol. 125, pp. 1921, 1962.
[38] W. F. Smith, 材料科學與工程,第二版, McGraw- Hill,1994.
校內:2058-07-30公開