簡易檢索 / 詳目顯示

研究生: 黃致銘
Huang, Chi-ming
論文名稱: Mg0.95Ni0.05TiO3陶瓷介電特性及其微波應用之研究
Dielectric Properties and Applications of Mg0.95Ni0.05TiO3-based Ceramics at Microwave Frequencies
指導教授: 黃正亮
Huang, Cheng-Liang
施權峰
Shih, Chuan-Feng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 107
中文關鍵詞: 陶瓷介電特性
外文關鍵詞: ceramics, dielectric properties
相關次數: 點閱:50下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中將討論Mg0.95Ni0.05TiO3陶瓷材料的微波介電特性及材料的微結構。由實驗結果知Mg0.95Ni0.05TiO3在1350℃燒結四小時,可得到介電特性εr~17.2,Q×f~180,000 ( 9GHz ),τf ~-45 (ppm/℃)。為了使共振頻率之溫度係數(τf)趨近於零,因此藉由正與負的共振頻率之溫度係數的介電材料來達到平衡。其中,具負共振頻率之溫度係數的Mg0.95Ni0.05TiO3分別與Ca0.6La0.8/3TiO3 (εr ~109,Q×f~17,000,τf ~ +212 (ppm/℃))、La0.5Na0.5TiO3 (εr ~122,Q×f~9600,τf ~ +480 (ppm/℃))及Nd0.5Na0.5TiO3(εr ~98,Q×f~7200,τf ~ +260 (ppm/℃))三個正共振頻率之溫度係數的介電材料混相。
    由實驗結果顯示,(1-x)Mg0.95Ni0.05TiO3-xCa0.6La0.8/3TiO3系統在x =0.15燒結溫度1325℃得到良好的介電特性; εr~24.61,Q×f~102,000,τf ~ -3.6 (ppm/℃); (1-x)Mg0.95Ni0.05TiO3-xLa0.5Na0.5TiO3系統在x =0.13燒結溫度1275℃得到介電特性; εr~23.22,Q×f~86,000,τf ~ +2.8 (ppm/℃); (1-x)Mg0.95Ni0.05TiO3-xNd0.5Na0.5TiO3系統在x =0.19燒結溫度1300℃的介電特性; εr ~25.61,Q×f~69,000,τf ~ -8 (ppm/℃)。
    最後,以FR4、Al2O3以及自製陶瓷基板0.87MNT-0.13LNT,設計一個3階Butterworth 髮夾式帶通濾波器,中心頻率為2.4GHz,頻寬10%,並使用電磁全波模擬軟體IE3D,討論模擬與實作量測的差異。

    The microwave dielectric properties and microstructure of Mg0.95Ni0.05TiO3 ceramic materials are investigated in this study. The Mg0.95Ni0.05TiO3 ceramic possesses an dielectric constant (εr ) of 17.2,a Q×f value of 180,000 ( GHz ),a temperature coefficient of resonant frequency(τf) of -45 (ppm/℃) sintering at 1350℃ for 4 hrs. In order to obtain a temperature-stable material, a method of combining a positive temperature coefficient of resonant frequency material with a negative one was examined in the present study. Mg0.95Ni0.05TiO3 mixed with Ca0.6La0.8/3TiO3 [εr ~109,Q×f~17,000,τf ~ +212 (ppm/℃)]、La0.5Na0.5TiO3 [εr~122,Q×f~9600,τf ~ +480 (ppm/℃)] and Nd0.5Na0.5TiO3[εr~98,Q×f~7200,τf ~ +260 (ppm/℃)], respectively.
    The experimental results show that when x=0.15, (1-x)Mg0.95Ni0.05TiO3-xCa0.6La0.8/3TiO3 system obtain the dielectric properties: εr ~24.61,Q×f~102,000,τf ~ -3.6 (ppm/℃); when x=0.13, (1-x)Mg0.95Ni0.05TiO3-xLa0.5Na0.5TiO3 system obtain the dielectric properties: εr~23.22,Q×f~86,000,τf ~ +2.8 (ppm/℃); when x=0.19, (1-x)Mg0.95Ni0.05TiO3-xLa0.5Na0.5TiO3 system obtain the dielectric properties: εr ~25.61,Q×f~69,000,τf ~ -8 (ppm/℃).
    Finally, we design a three order Butterworth band-pass filter with hairpin shape on various substrates (such as FR4, Al2O3, and 0.87MNT-0.13LNT). The center frequency is 2.4GHz, FBW is 10%, and using full wave E.M. simulatior IE3D to discuss the difference between simulation and measurement.

    第一章 緒論 1 1-1 前言 1 1-2 研究目的 1 第二章 介電材料原理 3 2-1 介電材料的微波特性 3 2-2 鈦鐵礦與鈣鈦礦之結構 8 2-2-1 鈦鐵礦之結構 8 2-2-2 鈣鈦礦之結構 10 2-3 燒結原理 10 2-4 燒結理論及工藝 11 2-4-1 燒結過程分析 11 2-5 介電共振器 13 2-5-1 介電共振器理論 15 第三章 濾波器與微帶線的原理 17 3-1 微帶線的原理 17 3-1-1 微帶線傳輸組態 17 3-1-2 微帶線參數公式 18 3-2 微帶線各項考量 21 3-2-1 集膚效應 21 3-2-2 微帶線的損失 21 3-2-3 微帶線的不連續效應 22 3-3 集總元件(lump element)濾波器簡介 25 3-4 微帶線諧振器種類 27 3-4-1 四分之一波長短路微帶線諧振器 27 3-4-2 二分之一波長開路微帶線諧振器 28 3-5 偶合共振器 30 3-6 共振器耦合型態 30 3-6-1 電場耦合 30 3-6-2 磁場耦合 33 3-6-3 混合耦合 36 3-7 饋入線之輸入及輸出點設計 38 3-8 濾波器設計步驟 39 第四章 實驗程序 42 4-1 微波介電材料的製備與特性量測流程圖 42 4-2 微波介電材料的特性分析與量測 45 4-2-1 X-Ray分析(XRD) 45 4-2-2 掃瞄式電子顯微鏡(SEM)分析 45 4-2-3 密度之量測 45 4-3 微波特性的量測 46 4-4 濾波器之製作與量測 53 4-4-1 濾波器規格 53 4-4-2 濾波器實作 54 4-4-3 特性量測 54 第五章 實驗結果與討論 56 5-1 Mg0.95Ni0.05TiO3微波介電特性之探討 56 5-1-1 (1-x)Mg0.95Ni0.05TiO3-xCa0.6La0.8/3TiO3微波介電特性之探討 56 5-1-2 (1-x)Mg0.95Ni0.05TiO3-xLa0.5Na0.5TiO3微波介電特性之探討 58 5-1-3 (1-x)Mg0.95Ni0.05TiO3-xNd0.5Na0.5TiO3微波介電特性之探討 59 5-2 濾波器頻率響應探討 61 5-2-1 FR4基板 61 5-2-2 Al2O3基板 62 5-2-3 0.87MCT – 0.13LNT基板 63 第六章 結論 104 參考文獻 105

    [1] J.-H. Sohn, Y. Inaguma, S.-O. Yoon, M. Itoh, T. Nakamura, S.-J. Yoonand H.-J Kim, “Microwave Dielectric Characteristics of Ilmenite-TypeTitanates with High Q Values”, J. Appl. phys., vol.33, pp.5466-5470,1994.
    [2] C.-L. Huang, J.-T. Tsai, Y.-B. Chen, “Dielectric properties of (1-y)Ca1-xLa2x/3TiO3-y(Li,Nd)1/2TiO3 ceramic system at microwave frequency”, Materials Research Bulletin ,vol.36, pp.547–556,2001.
    [3] C.-L. Huang, J.-J. Wang, “Microwave dielectric properties of (1 - x)(Mg0.95Co0.05)-
    TiO3–xCa0.6La0.8/3TiO3 ceramics with V2O5 addition”, Solid-State Electronics, vol.50, pp.1349–1354,2006.
    [4] H.Takahashi.,Y.Baba,.,K.Ezaki,Y.Okamoto,K.Shibata,K.Kuroki,S.Nakano, “Dielectric characteristics of (A .A )TiO3 Ceramics at Microwave Frequencies ”, Jpn.J.Appl.Phys.,vol. 30,No.9B, pp.2339-2342,1991.
    [5] T. H., Baba, Y., Ezaki, K. and Ito, A., “High dielectric microwave materials and its application”, Sanyo Tech. Rev., 28, 104 (in Japanese),1996.
    [6] 鄭景太, 淺談高頻低損失介電材料, 工業材料, 176期 90年8月.
    [7] W. J. Huppmann, and G. Petzow, Sintering processes., New York: Plenum Pr-ess, pp. 189-202, 1979.
    [8] F. V. Lenel, “Sintering in Presence of a Liquid Phase”, Trans. Am. Inst.Mining. Met. Engrs, pp.878-905, 1948.
    [9] SCHAFFER SAXENA ANTOLOVICH SANDERS WARNER,“The Science and Design of Engineering Materials”,Chap3.
    [10] 肖定全,陶瓷材料,新文京開發出版,p49-55,2003
    [11] V. N. Eremenko, Y. V. Naidich, and I. Aienko, Liquid phase sintering., New York: Consultants Bureau, 1970, ch. 4.
    [12] 翁敏航,射頻被動元件設計,東華書局,台灣,p126,1996
    [13] L. A. Trinogga, Guo Kaizhou, and I. C. Hunter, Practical microstrip circuit design., UK: Ellis Horwood, 1991.
    [14] David M. Pozar, Microwave engineering., Reading: Addison-Wesley, 1998
    [15] R. A. Pucel, D. J. Masse, and C. E. Hartwig, “Losses in microstrip,” IEEE. Trans. Microwave Theory Tech., vol. MIT-16, pp. 342-350, Jun. 1968.
    [16] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave filters impedance- mattching, networks, and coupling structures., New York: McGraw-Hill, 1980.
    [17] V. Nalbandian, and W. Steenart, “Discontinunity in symmetric striplines due to impedance step and their compensations,” IEEE Trans. Microwave Theory Te-ch., vol. MTT-20, pp. 573-578, Sep. 1980.
    [18] 張盛富,戴明鳳, 無線通信之射頻被動電路設計,全華出版社,1998.
    [19] Darko Kajfez and Pierre Guillon, Dielectric Resonators, University of Mississippi.
    [20] K. C. Gupta, R. Garg, I. Bahl, and E. Bhartis, Microstrip lines and slotlines, second edition., Boston: Artech House, 1996.
    [21] J.-S.Hong, and M.-J.Lancaster,“Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters,” IEEE Trans. MicrowaveTheory Tech., vol. 44, pp. 2099-2109, Nov. 1996.
    [22] Inder Bahl and Prakash Bhartia, Microwave solid state circuit design, chap6 John Wiley&Sons 1988.
    [23] Peter A. Rizzi., Microwave Engineering Passive Circuits, chap9, Prentice Hall, 1988.
    [24] 傅坤幅, 微波陶瓷材料介電特性量測,工業材料, 132期, 86年12月.
    [25] P. Wheless and D. Kajfez, “The Use of Higher Resonant Modes in Measuring the Dielectric Constant of Dielectric Resonators,” IEEE MTT-S, Symposium Dig., pp.473-476, 1985.
    [26] Y. Kobayashi and N. Katoh, “Microwave measurement of dielectric properties of low-loss materials by dielectric rod resonator method,” IEEE. Trans. Micr- owave Theory Tech., MTT-33, 586-592, 1985.
    [27] Y. Kobayashi, and S. Tanaka, "Resonant modes of a dielectric resonator short-circuited at both ends by parallel conducting plates," IEEE. Trans. MicrowaveTheory Tech., MTT-28, 1077-1085, 1980.
    [28] B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter range,” IEEE Trans. MTT, vol. MTTS, pp. 402-410, 1960.
    [29] J. Helszajn, “Microwave Engineering: Passive, Active, and Non-reciprocal Circuits,” McGraw-Hill, 1992.
    [30] D. Kajfez, “Computed model field distribution for isolated dielectric resonators,” IEEE. Trans. Microwave Theory Tech., vol. MTT-32, pp. 1609-1616, Dec. 1984.
    [31] D. Kajfez, “Basic principle give understanding of dielectric waveguides and resonators,” Microwave System News., vol. 13, pp. 152-161, 1983.
    [32] D. Kajfez, and P. Guillon, Dielectric resonators., New York: Artech House,1989.
    [33] 吳朗, 電工材料,滄海書局,p72, 87年.
    [34] J. S. Wong, “Microstrip tapped-line filter design,” IEEE Trans.Microwave Theory Tech.”, vol. MTT-27, pp. 44-50, Jan. 1979.
    [35] International Telephone and Telegraph Corp., Reference Data for Radio Engineers, 6th Ed. Howard W. Sams Co., Inc.
    [36] 吳政哲,”微波介電陶瓷材料之研製與應用”,國立成功大學電機工程系碩士論文,2000.
    [37] B.D. Silverman, Phys. Rev., vol. 125, pp. 1921, 1962.
    [38] W. F. Smith, 材料科學與工程,第二版, McGraw- Hill,1994.

    無法下載圖示 校內:2058-07-30公開
    校外:2058-07-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE