簡易檢索 / 詳目顯示

研究生: 郭建良
Kuo, Chien-Liang
論文名稱: 具有電壓與溫度補償的內嵌式參考震盪器
On-Chip Reference Oscillators with Voltage and Temperature Compensation
指導教授: 張順志
Chang, Soon-Jyh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 75
中文關鍵詞: 震盪器
外文關鍵詞: Oscillator
相關次數: 點閱:88下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了因應系統單晶片高度整合的需求,使用低成本內嵌式震盪器來提供系統所需的參考時脈日益重要。本論文提出兩種內嵌式振盪器設計,除了具有小面積與低功率消耗的特性外,如何在製程、電源電壓、溫度漂移下保持輸出頻率的穩定性,以及如何使設計能隨製程演進得到好處是本研究主要的設計目標。第一個設計是具有平均電壓反饋技巧的參考震盪器,量測結果顯示在合理的製程、電源電壓、溫度變動下,輸出震盪頻率漂移都在±1%以內。在第二個設計中,我們進一步的改進之前的設計,使其適合於先進的製程技術,佈局後模擬結果顯示在合理的製程、電源電壓、溫度變動下,輸出震盪頻率漂移可以維持在±0.5%以內。

    Due to the high integration trend in a system-on-chip (SoC), using on-chip reference oscillator to provide the reference frequency for a system is getting important today. This thesis proposes two on-chip reference oscillators. In addition to the features of low cost and low power consumption, how to ensure the stability against process, supply voltage and temperature (PVT) variations, and how to make the design more suitable for advanced process technology are the major objectives of this research. The first design employs voltage averaging feedback technique to realize the reference oscillator. Measurement results show that the frequency variations are all within ±1% for the given PVT variations. The second design further improves the preceding design and makes it more suitable to advanced process technology. Post-layout simulation results show that the frequency variations are all within ±0.5% for the given PVT variations.

    List of Figures vi List of Tables viii Chapter 1 Introduction 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 2 Chapter 2 Basics of Oscillators 4 2.1 GENERAL CONSIDERATIONS 4 2.2 ARCHITECTURES OF OSCILLATORS 7 2.2.1 Ring Oscillators 7 2.2.2 Relaxation Oscillators 10 2.2.3 LC Oscillators 11 2.2.4 Crystal Oscillators 15 2.2.5 Comparison of Oscillators 17 2.3 VOLTAGE CONTROLLED OSCILLATORS 18 2.4 SOURCES OF FREQUENCY VARIATION 21 Chapter 3 Relaxation Oscillator with Voltage Averaging Feedback 24 3.1 CONVENTIONAL RELAXATION OSCILLATORS 24 3.2 ARCHITECTURE OF THE RELAXATION OSCILLATOR WITH VAF 27 3.2.1 Main Relaxation Oscillator 28 3.2.2 Voltage Averaging Feedback Circuit 30 3.2.3 Design Considerations 33 3.3 SIMULATION RESULTS 37 3.4 MEASUREMENT RESULTS 43 3.5 COMPARISON AND DISCUSSION 48 Chapter 4 Charge-Pump-Based VAF Circuit 50 4.1 OPAMP-BASED VAF CIRCUIT 50 4.2 THE PROPOSED OSCILLATOR WITH CHARGE-PUMP-BASED VAF CIRCUIT 52 4.2.1 Bootstrapped Switch 52 4.2.2 Charge-Pump-Based VAF Circuit 55 4.3 SIMULATION RESULTS 58 4.4 MEASUREMENT RESULTS 64 4.5 COMPARISON AND DISCUSSION 69 Chapter 5 Conclusion 71 Bibliography 73

    [1] Y.-S. Shyu and J.-C. Wu, “A process and temperature compensated ring oscillator,” in Proc. of Asia Pacific Conf. ASICs, Aug. 1999, pp. 283-286.
    [2] K. Sandaresan, P. E. Allen, and F. Ayazi, “Process and temperature compensation in a 7-MHz CMOS clock oscillator,” IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 433–441, Feb. 2006.
    [3] Chao-Fang Tsai, et al., “On-chip reference oscillators with process, supply voltage and temperature compensation,” in Proc. of IEEE International Symposium on Next-Generation Electronics, Dec. 2010, pp. 108-111.
    [4] M. S. McCorquodale, S. M. Pernia, J. D. O’Day, G. Carichner, E. Marsman, N. Nguyen, S. Kubba, S. Nguyen, J. Kuhn, and R. B. Brown, “A 0.5-to-480 MHz self-referenced CMOS clock generator with 90 ppm total frequency error and spread-spectrum capability,” in IEEE ISSCC Dig. Tech. Papers, Mar. 2008, pp. 524–525.
    [5] A. V. Boas and A. Olmos, “A temperature compensated digitally trimmable on-chip IC oscillator with low voltage inhibit capability,” in Proc. of ISCAS, Sep. 2004, pp.501-504.
    [6] Y. Tokunaga, S. Sakiyama, A. Matsumoto, and S. Dosho, “An on-chip CMOS relaxation oscillator with power averaging feedback using a reference proportional to supply voltage,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2009, pp. 404–405.
    [7] Y. Tokunaga, S. Sakiyama, A. Matsumoto, and S. Dosho, “An on-chip CMOS relaxation oscillator with voltage averaging feedback,” IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1150 - 1158, June 2010.
    [8] F. Sebastiano, L. Breems, K. Makinwa, S. Drago, D. Leenaerts, and B. Nauta, “A low-voltage mobility-based frequency reference for crystal-less ULP radios,” IEEE J. Solid-State Circuits, vol. 44, no. 7, pp. 2002-2009, July 2009.
    [9] K. Choe, O. D. Bernal, D. Nuttman, and M. Je, “A precision relaxation oscillator with a self-clocked offset-cancellation scheme for implantable biomedical SoCs,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2009, pp. 402–403.
    [10] G. De Vita, F. Marraccini, and G. Iannaccone, “Low-voltage low-power CMOS oscillator with low temperature and process sensitivity,” in Proc. of ISCAS, June 2007, pp. 2152-2155.
    [11] W. Sansen, F. Op’t Eynde, and M. Steyaert, “A CMOS temperature-compensated current reference,” IEEE J. Solid-State Circuits, vol. 23, pp. 821–824, 1988.
    [12] J. Lee and S.-H. Cho, “A 10MHz 80 μW 67 ppm/°C CMOS reference clock oscillator with a temperature compensated feedback loop in 0.18 μm CMOS,” in Proc. of Symp. VLSI Circuits, Aug. 2009, pp. 226 – 227.
    [13] Urs Denier, “Analysis and design of an ultralow-power CMOS relaxation oscillator,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 8, pp. 1973-1982, Aug. 2010.
    [14] A. M. Abo and P. R. Gray, “A 1.5V, 10-bit, 14MS/s CMOS pipeline analog-to-digital converter,” in Proc. of Symp. VLSI Circuits, 1998, pp. 166-169.
    [15] M. El-Hage and F. Yuan, “An overview of low-voltage VCO delay cells and a worst-case analysis of supply noise sensitivity,” in Proc. of the Canadian Conference on Electrical and Computer Engineering, May 2004, pp. 1785-1788.
    [16] B. Razavi, Design of Analog CMOS Integrated Circuits. McGraw-Hill, 2001.
    [17] A. S. Sedra and K. C. Smith, Microelectronic Circuits, 4th Edition. Oxford University Press, 1998.
    [18] N. H. E. Weste and D. Harris, CMOS VLSI Design, A Circuits and Systems Perspective, 3rd Edition. Pearson Education, 2005.
    [19] W. J. Li, “On-chip reference oscillators with process and temperature compensation,” MS Thesis, Dpt. of Electrical Engineering, National Cheng Kung University, July 2008.
    [20] Y. Tokunaga, S. Sakiyama, and S. Dosho, “An over 20,000 quality factor on-chip relaxation oscillator using power averaging feedback with a chopped amplifier,” in Proc. of Symp. VLSI Circuits, June 2010, pp. 111-112.
    [21] S. M. Kashmiri, M. A. P. Pertijs, and K. A. A. Makinwa, “A thermal-diffusivity- based frequency reference in standard CMOS with an absolute inaccuracy of ±0.1% from -55 C to 125 C,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2510-2520, Dec. 2010.
    [22] K. Ueno, T. Asai, and Y. Amemiya, “A 30-MHz 90-ppm/°C fully-integrated clock reference generator with frequency-locked loop,” in Proc. of ESSCIRC, Sep. 2009, pp. 392-395.
    [23] K. Ueno, T. Asai, and Y. Amemiya, “Low-power clock reference circuit for intermittent operation of subthreshold LSIs,” in Proc. of ISCAS, May 2009, pp. 5-8.
    [24] C. Y. Yu, J. Y. Yu, and C. Y. Lee, “An eCrystal oscillator with self-calibration capability,” in Proc. of ISCAS, May 2009, pp. 237-240.
    [25] X. Zhang and A. B. Apsel, “A process compensated 3-GHz ring oscillator,” in Proc. of ISCAS, May 2009, pp. 581-584.
    [26] X. Zhang, R. Dokania, M. Mukadam, and A. B. Apsel, “A successive approximation based process-invariant ring oscillator,” in Proc. of ISCAS, May 2010, pp. 1057-1060.
    [27] X. Zhang and A. B. Apsel, “A low-power, process-and-temperature-compensated ring oscillator with addition-based current source,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 5, pp. 868-878, May 2011.
    [28] B. J. Song, H. Kim, Y. Choi, and W. Kim, “A 50% power reduction scheme for CMOS relaxation oscillator,” in Proc. of IEEE Asia Pacific Conference on ASICs, Aug. 1999, pp. 154-157.
    [29] W. J. Li, S. J. Chang, and Y. Z. Lin, “A current compensated reference oscillator,” in Proc. of IEEE VLSI-DAT, Apr. 2009, pp. 130-133.
    [30] K. Lasanen, E. Räisänen-Ruotsalainen, and J. Kostamovaara, “A 1-V, self adjusting, 5-MHz CMOS RC-oscillator,” in Proc. of ISCAS, Aug. 2002, vol. 4, pp. 377-380.

    下載圖示 校內:2012-08-30公開
    校外:2012-08-30公開
    QR CODE