| 研究生: |
張凱雄 Chang, Kai-Hsiung |
|---|---|
| 論文名稱: |
實現低運算複雜度的QRS複合波檢測法於微處理器系統並以三導程合成心電圖產生器做為驗證 A Low Computational-Complexity QRS Complex Detection Algorithm Realized in an MCU-Based System and Tested with a Three-Lead Synthetic ECG Generator |
| 指導教授: |
楊明興
Young, Ming-Shing |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | McSharry模型 、合成心電圖 、心率量測演算法 、QRS複合波量測演算法 、心電圖產生器 、心電圖分析演算法 、微分心電圖 |
| 外文關鍵詞: | the derivative of the ECG, Synthetic electrocardiogram, ECG analytic algorithm, McSharry's Model, heart rate detection algorithm, ECG generator, QRS-complex detection algorithm |
| 相關次數: | 點閱:176 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一個正常的心電圖週期基本上是由P波、QRS複合波以及T波所組成,而心臟內各種不同的電氣活動可以透過這些波反映出來,心電圖則是一種非侵入人體的量測方法,用來記錄心臟內部的電氣活動,透過觀察這些心電圖的型態,醫生可以診斷出許多不同型式的心臟方面的疾病。因此在本文中首先會談到有關心電圖量測電路模組的設計,心電圖量測電路模組是由儀表放大器、Sallen-Key高通濾波器、Sallen-Key低通濾波器以及後級放大器所組成,這些電路配合PSpice電路模擬軟體來設計,用來量測心電圖的三個主要導程,以及過濾掉存在量測波形內的雜訊,並以運算放大器來實現電路。然後在本文中會簡化並且使用在2003年由Dr. McSharry所提出的合成心電圖模型,這個心電圖模型是由三組聯立的微分方程式所構成,並且使用改良後的4階泰勒級數來快速的近似在微分方程式中的指數函數,因此當在研究心電圖分析演算法的時候,就可以使用由LabVIEW所開發的合成波形控制平台,來獲得各種我們所想要的心電圖型態,不同波峰(P,Q,R,S,T)的間隔時間以及心跳速率。最後在本文會提出一個低運算複雜度的QRS複合波檢測演算法,這個演算法可以輕易的實現一般的處理器或是微控制器中,它運用了微分後的心電圖訊號,來精確並且即時的檢測出原始心電圖訊號的Q、R、S點的位置,然後計算出QRS複合波的時間長度以及心跳速率,我們也使用了這個QRS複合波檢測演算法來設計一個由微處理器為核心的量測儀器,並且以12個不同的心電圖樣本來做為測試(心跳速率範圍由每秒49.59下到每秒155.44下),由實驗結果可以證明,使用這個新的QRS複合波檢測演算法來量測R-R間隔時間,其最大的相對誤差僅有1.58%,其它更詳細的資料也將在本文末加以討論,在本文中所提出的低運算複雜度的QRS複合波檢測演算方法,以及所發展的8位元微控制器心電圖量測系統,具有相當的潛力能使用在可攜式和價格平易的量測儀器中。
A normal electrocardiogram (ECG) cycle basically consists of the P-wave, the QRS complex and the T-wave, which reflect the different electrical activities within the heart. An electrocardiogram is a non-invasive tool that is used for recording the electrical activity within the heart, and from the observation of ECG morphology, doctors are able to diagnose different types of heart disease. Therefore, this paper first presents the design of an electrocardiogram measurement circuit module, which consists of the instrumentation amplifier, the Sallen-Key high-pass filter, the Sallen-Key low-pass filter, and the back stage amplifier. The ECG measurement circuit module is designed with the PSpice circuit simulation CAD to measure three lead electrocardiograms of Einthoven's Triangle and filter the noise within the measured waveforms, and then uses the operational amplifier to implement the circuits. Afterward, this paper simplifies and adopts a synthetic electrocardiogram model composed of three coupled differential equations proposed by Dr. McSharry et al. (2003), as well as utilizes an improved fourth-order Taylor series to quickly approximate the exponential function within the differential equation of a simplified synthetic ECG model so that, when studying ECG analytic algorithms, the graphical user interface (GUI) program “Synthetic Waveforms Control Panel”, developed by the author using LabVIEW, can be used to attain the desirable morphology of electrocardiogram as well as the time intervals between peaks (P, Q, R, S, T) and heart rate. Finally, this paper presents a low computational-complexity QRS complex detection algorithm, which can easily be implemented in a general processor or micro-controller. The algorithm adopts the derivative of the electrocardiogram waveform to accurately identify the peaks (the Q-, R-, and S-peaks) and calculate the heart rate and the duration of the QRS complex in real-time. Then we apply the QRS complex detection algorithm to design an MCU-based ECG measurement instrument, and test it with 12 electrocardiogram samples (with heart rates from 49.59 to 155.44 BPM). The experimental results show that the maximum relative error of the measured R-R interval with the new QRS complex detection algorithm is only 1.58%, while the more detailed experimental data will be discussed at the end of this paper. The low computational-complexity QRS complex detection algorithm and the 8-bit MCU-based ECG measurement system developed in this work has good potential for use in portable and reasonable measurement instruments.
1. Kashani, A. and S.S. Barold, Significance of QRS Complex Duration in Patients With Heart Failure. Journal of the American College of Cardiology, 2005. 46(12): p. 2183-2192.
2. Pueyo, E., L. Sornmo, and P. Laguna, QRS Slopes for Detection and Characterization of Myocardial Ischemia. Biomedical Engineering, IEEE Transactions on, 2008. 55(2): p. 468-477.
3. Matti Virtanen, M.K.T.N.P.K.M.T.T.L.R.L.K.N.T.K.M.N.K.N.V.T.J.M. and V. Jari, Heart rate variability derived from exercise ECG in the detection of coronary artery disease. Physiological Measurement, 2007. 28(10): p. 1189.
4. Ivo Iliev, V.K. and T. Serafim, Real-time detection of pathological cardiac events in the electrocardiogram. Physiological Measurement, 2007. 28(3): p. 259.
5. Reske, D. and Z. Moussavi. Design of a web-based remote heart-monitoring system. in [Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society] EMBS/BMES Conference, 2002. Proceedings of the Second Joint EMBS/BMES Conference. 2002.
6. Al-Ali, A.R., M. Al-Rousan, and M. Al-Shaikh. Embedded system-based mobile patient monitoring device. in Computer-Based Medical Systems, 2003. Proceedings. 16th IEEE Symposium. 2003.
7. Ma, Z. and F. Ng Nai. Medical signal transmission and analysis based on the Internet. in Information Technology Applications in Biomedicine, 2003. 4th International IEEE EMBS Special Topic Conference on. 2003.
8. Kong, K.Y., C.Y. Ng, and K. Ong. Web-based monitoring of real-time ECG data. in Computers in Cardiology 2000. 2000.
9. M Oehler, V.L.K.M. and M. Schilling, A multichannel portable ECG system with capacitive sensors. Physiological Measurement, 2008. 29(7): p. 783.
10. Anna Gruetzmann, S.H. and J.M., Novel dry electrodes for ECG monitoring. Physiological Measurement, 2007. 28(11): p. 1375.
11. Steffen, M., A. Aleksandrowicz, and S. Leonhardt, Mobile Noncontact Monitoring of Heart and Lung Activity. Biomedical Circuits and Systems, IEEE Transactions on, 2007. 1(4): p. 250-257.
12. Chien, J.-R.C. and C.-C. Tai, Handheld electrocardiogram measurement instrument using a new peak quantification method algorithm built on a system-on-chip embedded system. Review of Scientific Instruments, 2006. 77(9): p. 095106-7.
13. Rodriguez, J., A. Goni, and A. Illarramendi, Real-time classification of ECGs on a PDA. IEEE Transactions on Information Technology in Biomedicine, 2005. 9(1): p. 23-34.
14. Arzeno, N.M., Z.D. Deng, and C.S. Poon, Analysis of first-derivative based QRS detection algorithms. IEEE Transactions on Biomedical Engineering, 2008. 55(2): p. 478-484.
15. Christov, I., Real time electrocardiogram QRS detection using combined adaptive threshold. BioMedical Engineering OnLine, 2004. 3(1): p. 28.
16. Kamath, C. and T.V. Ananthapadmanabha, Correction to “Modeling QRS Complex in dECG&rdquo. Biomedical Engineering, IEEE Transactions on, 2007. 54(3): p. 570-570.
17. Kamath, C. and T.V. Ananthapadmanabhayuyu, Modeling QRS Complex in dECG. Biomedical Engineering, IEEE Transactions on, 2007. 54(1): p. 156-158.
18. Pan, J. and W.J. Tompkins, A Real-Time QRS Detection Algorithm. Biomedical Engineering, IEEE Transactions on, 1985. BME-32(3): p. 230-236.
19. Zhang, Q.H., et al., An algorithm for robust and efficient location of T-wave ends in electrocardiograms. IEEE Transactions on Biomedical Engineering, 2006. 53(12): p. 2544-2552.
20. Meyer, C., J.F. Gavela, and M. Harris, Combining Algorithms in Automatic Detection of QRS Complexes in ECG Signals. Information Technology in Biomedicine, IEEE Transactions on, 2006. 10(3): p. 468-475.
21. Tan, K.F., K.L. Chan, and K. Choi. Detection of the QRS complex, P wave and T wave in electrocardiogram. in Advances in Medical Signal and Information Processing, 2000. First International Conference on (IEE Conf. Publ. No. 476). 2000.
22. Clifford, G.D. and P.E. McSharry. Method to filter ecgs and evaluate clinical parameter distortion using realistic ECG model parameter fitting. in Computers in Cardiology, 2005. 2005.
23. Singh, B.N. and A.K. Tiwari, Optimal selection of wavelet basis function applied to ECG signal denoising. Digital Signal Processing, 2006. 16(3): p. 275-287.
24. Moraes, J.C.T.B., et al. A QRS complex detection algorithm using electrocardiogram leads. in Computers in Cardiology, 2002. 2002.
25. Moraes, J.C.T.B., et al. A real time QRS complex classification method using Mahalanobis distance. in Computers in Cardiology, 2002. 2002.
26. Fayyaz-ul-Amir Afsar, M. and A. Muhammad, Robust electrocardiogram (ECG) beat classification using discrete wavelet transform. Physiological Measurement, 2008. 29(5): p. 555.
27. Kadambe, S., R. Murray, and G.F. Boudreaux-Bartels, Wavelet transform-based QRS complex detector. Biomedical Engineering, IEEE Transactions on, 1999. 46(7): p. 838-848.
28. Jianjian, W. and L. Zheying. An ECG Segmentation Model Used for Signal Generator. in Innovative Computing, Information and Control, 2007. ICICIC '07. Second International Conference on. 2007.
29. Josko, A. and R.J. Rak, Effective simulation of signals for testing ECG analyzer. Instrumentation and Measurement, IEEE Transactions on, 2005. 54(3): p. 1019-1024.
30. Kicmerova, D. Modelling of Arrhythmics ECG Signals with McSharrys Model. in Radioelektronika, 2007. 17th International Conference. 2007.
31. McSharry, P.E., et al. Method for generating an artificial RR tachogram of a typical healthy human over 24-hours. in Computers in Cardiology, 2002. 2002.
32. McSharry, P.E., et al., A dynamical model for generating synthetic electrocardiogram signals. Biomedical Engineering, IEEE Transactions on, 2003. 50(3): p. 289-294.
33. Chang, J.-R.C. and C.-C. Tai, Accurate programmable electrocardiogram generator using a dynamical model implemented on a microcontroller. Review of Scientific Instruments, 2006. 77(7): p. 075104-5.
34. Jia-Ren Chang, C. Design of a Programmable Electrocardiogram Generator Using a Microcontroller and the CPLD Technology. in Industrial Electronics Society, 2007. IECON 2007. 33rd Annual Conference of the IEEE. 2007.
35. Chang, K.-H. and M.-S. Young, Design of a Three-Lead Synthetic ECG Generator Using the Simplified McSharry's Model. Instrumentation Science & Technology, 2009 (in press).
36. Kohler, B.U., C. Hennig, and R. Orglmeister, The principles of software QRS detection. Engineering in Medicine and Biology Magazine, IEEE, 2002. 21(1): p. 42-57.
37. Abo-Zahhad, M., S.M. Ahmed, and A. Al-Shrouf. Electrocardiogram data compression algorithm based on the linear prediction of the wavelet coefficients. in Electronics, Circuits and Systems, 2000. ICECS 2000. The 7th IEEE International Conference on. 2000.
38. Butler, G.C., Y. Yamamoto, and R.L. Hughson, Heart rate variability to monitor autonomic nervous system activity during orthostatic stress. J Clin Pharmacol, 1994. 34(6): p. 558-562.
39. Su, C.-F., et al., Sympathetic and parasympathetic activities evaluated by heart-rate variability in head injury of various severities. Clinical Neurophysiology, 2005. 116(6): p. 1273-1279.
40. Chang, K.-H. and M.-S. Young, Design of a Microcontroller-Based ECG Measurement System to Detect QRS Complex with dECG in Real-Time. Instrumentation Science & Technology, 2009 (in press).
41. PhysioNet. Physikalisch-Technische Bundesanstalt (PTB) Diagnostic ECG Database. Available from: http://www.physionet.org/physiobank/database/ptbdb/.