研究生: |
盧鎮遠 Lu, Chen-Yuan |
---|---|
論文名稱: |
鋰電池碳-矽複合材料粉末之多重電性表面奈米成像 Nanoscale surface multi-electrical-property mapping of carbon-coated silicon nano-composite powders for lithium ion battery |
指導教授: |
劉浩志
Liu, Hao-chih |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 94 |
中文關鍵詞: | 碳矽粉末 、Electric Force Microscopy(EFM) 、Kelvin Probe Microscopy(KPM) 、Conductive Atomic Force Microscopy(CAFM) 、手套箱 AFM |
外文關鍵詞: | KPFM, EFM, CAFM, carbon coated silicon nano-composite powder |
相關次數: | 點閱:95 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在鋰離子電池的負極材料中,矽電極能提供相當高的理論電容量,是目前商業化石墨電極材料的十倍以上,但其充放電時,體積變化大,因此易造成電極的破壞,近期間,相關的研究中透過矽材料結構的奈米化以及表面改質的方式包覆導電材料於表面,來減緩體積改變所造成的影響並提高矽材料的導電性,而電池的電容量以及循環壽命確實有了明顯改善,但至目前為止仍無有效的分析方式能對經表面改質後的矽原材料粉末來進行量測分析,獨立出表面改質製程對電池表現的影響。
本研究中,將利用原子力顯微鏡對材料表面具有高解析度的優勢,結合Kelvin Probe Force Microscopy (KPFM)、Electrostatic Force Microscopy (EFM) 與 Conductive Atomic force Microscopy (CAFM)三項表面電性分析技術,於自製手套箱中的低溼度環境下,針對光宇材料所提供經表面碳改質處理的矽材料粉末進行掃描,得到粉體的表面形貌、表面電位、靜電力以及電流等資訊。
從KPFM表面電位的量測結果,可以換算成粉體的表面功函數,粉體的功函數範圍與其標準差越小,代表表面生成的物質越相近,均勻性越高,而功函數的數值也可以推測其表面生成的物質,最後並透過X射線光電子能譜儀加以驗證,此外,若在粉體的製備過程中表面產生缺陷、有機物的殘留抑或是氧化物的生成,皆會侷限電荷的移動,透過EFM表面靜電力的量測,能推得表面電荷的分佈情形並定位出電荷集中處,進而討論造成缺陷的原因,接著,藉由CAFM量測的表面電流大小,比較各粉體的導電性,並搭配掃描式電子顯微鏡觀察粉體的造粒情形,最後再與台南大學張家欽教授團隊所提供各粉體的電池充放電測試資料進行結果比較。
我們發現G16粉體的表面均勻性雖然最好,但其造粒的結果顆粒大小不一,且表面具有大型孔洞,造成粉體於組裝電池時破碎,充放電表現不佳,而G17粉體的表面均勻性雖然最差,但因為其表面生成了許多一氧化矽,能與鋰離子進行可逆反應並使得電容量比其他粉體高,而相較於M系列粉末,G系列粉末導電性較佳,M系列粉末容易於組成電池後有內阻過大的問題,導致充放電表現不佳,而表面電荷的分佈則受各粉體的表面形貌以及表面改質的生成物所影響,與造粒的製程有關。
綜合所有的分析結果,碳矽粉末若能採用G16粉體的表面改質製程,提高均勻性,並在製程中藉由控制部分氧氣參與反應,於矽電極原料粉末表面生成一氧化矽以提高電容量,並參考M1R的造粒方式,將使得該材料的充放電效能達到最佳化。
相較於傳統研究鋰離子電池材料的方式,此分析程序從電池的電極原料粉末切入,能確實分析各製程以及對粉體造成的影響,有助於提升鋰離子電池原料粉末的品質管理,最後並將影響電池表現的因素獨立討論,可以針對該因素進行改善,並能在組成電池前預測粉體的充放電表現,大量節省新材料的開發時間。
The objective of this study is to evaluate the advantages and disadvantages of raw electrode powders before cell test. We applied three electrical AFM measurements, Kelvin Probe Force Microscopy (KPFM), Electrostatic Force Microscopy (EFM) and Conductive Atomic Force Microscopy (CAFM) in our homemade glove box at about 5% relative humidity to characterize the surface electrical properties of powders. For the KPFM results, we can calculate surface work function of powders from the distribution of their surface potential and know the surface uniformity of each powder. The surface of G16 powder is much homogeneous than others. This results are also agree with XPS (X-ray photoelectron spectroscopy) fitting data. Form the EFM images, we can localize defects on the surface of powder by the different phase shift. These defects might be caused by the surface uniformity of powders or the dangling bonds of some compounds on the surface. CAFM images showed the current intensity of each powder. Consider the current area of powders, we can get the effective current on each powder. We find that the conductivity of G series powder is much higher than M series powder. After measurement, we connect these features to the results of cell test and establish the relationship between raw material and their battery performance. In this study, results from AFM electrical measurements should be useful for improving manufacture process, also applied much simple and efficiency method to measure material directly.
[1] H. Wu, G. Yu, L. Pan, N. Liu, M. T. McDowell, Z. Bao, et al., "Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles," Nat Commun, vol. 4, p. 1943, 2013.
[2] Y. Yao, M. T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, et al., "Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life," Nano Lett, vol. 11, pp. 2949-54, Jul 13 2011.
[3] T. Cetinkaya, M. Uysal, M. O. Guler, H. Akbulut, and A. Alp, "Improvement cycleability of core–shell silicon/copper composite electrodes for Li-ion batteries by using electroless deposition of copper on silicon powders," Powder Technology, vol. 253, pp. 63-69, 2014.
[4] M. Nonnenmacher, M. o’Boyle, and H. Wickramasinghe, "Kelvin probe force microscopy," Applied physics letters, vol. 58, pp. 2921-2923, 1991.
[5] P. Girard, "Electrostatic force microscopy: principles and some application to semiconductor," Nano technology, vol. 12, pp. 485–490, 2001.
[6] B. Boukamp, G. Lesh, and R. Huggins, "All‐solid lithium electrodes with mixed‐conductor matrix," Journal of the Electrochemical Society, vol. 128, pp. 725-729, 1981.
[7] M. Yoshio, H. Wang, K. Fukuda, Y. Hara, and Y. Adachi, "Effect of Carbon Coating on Electrochemical Performance of Treated Natural Graphite as Lithium‐Ion Battery Anode Material," Journal of The Electrochemical Society, vol. 147, pp. 1245-1250, 2000.
[8] F. Tuinstra and J. L. Koenig, "Raman spectrum of graphite," The Journal of Chemical Physics, vol. 53, pp. 1126-1130, 1970.
[9] K. Peng, J. Jie, W. Zhang, and S.-T. Lee, "Silicon nanowires for rechargeable lithium-ion battery anodes," Applied Physics Letters, vol. 93, p. 033105, 2008.
[10] H. Kim, B. Han, J. Choo, and J. Cho, "Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries," Angew Chem Int Ed Engl, vol. 47, pp. 10151-4, 2008.
[11] H. Jung, "Amorphous silicon anode for lithium-ion rechargeable batteries," Journal of Power Sources, vol. 115, pp. 346-351, 2003.
[12] J. Cho, "Porous Si anode materials for lithium rechargeable batteries," Journal of Materials Chemistry, vol. 20, p. 4009, 2010.
[13] Y. Yu, L. Gu, C. Zhu, S. Tsukimoto, P. A. van Aken, and J. Maier, "Reversible storage of lithium in silver-coated three-dimensional macroporous silicon," Adv Mater, vol. 22, pp. 2247-50, May 25 2010.
[14] G. Binnig, C. F. Quate, and C. Gerber, "Atomic force microscope," Physical review letters, vol. 56, p. 930, 1986.
[15] G. Meyer and N. M. Amer, "Novel optical approach to atomic force microscopy," Applied physics letters, vol. 53, pp. 1045-1047, 1988.
[16] 黃英碩, "掃描探針顯微術的原理及應用," 科儀新知, vol. 144, pp. 11-19, 2005.
[17] N. Lang and W. Kohn, "Theory of metal surfaces: work function," Physical Review B, vol. 3, p. 1215, 1971.
[18] I. Campbell, T. Hagler, D. Smith, and J. Ferraris, "Direct measurement of conjugated polymer electronic excitation energies using metal/polymer/metal structures," Physical review letters, vol. 76, p. 1900, 1996.
[19] N. Surplice and R. D'arcy, "A critique of the Kelvin method of measuring work functions," Journal of Physics E: Scientific Instruments, vol. 3, p. 477, 1970.
[20] H. Bluhm, T. Inoue, and M. Salmeron, "Formation of dipole-oriented water films on mica substrates at ambient conditions," Surface science, vol. 462, pp. L599-L602, 2000.
[21] F.M. Serry, K. Kjoller, J. T. Thornton, R. J. Tench, and D. Cook, "Electric Force Microscopy, Surface Potential Imaging, and Surface Electric Modification
with the Atomic Force Microscope (AFM)," Bruker corporation, 2010.
[22] W. Melitz, J. Shen, A. C. Kummel, and S. Lee, "Kelvin probe force microscopy and its application," Surface Science Reports, vol. 66, pp. 1-27, 2011.
[23] S. C. Nagpure, B. Bhushan, and S. S. Babu, "Surface potential measurement of aged Li-ion batteries using Kelvin probe microscopy," Journal of Power Sources, vol. 196, pp. 1508-1512, 2011.
[24] T. Mélin, M. Zdrojek, and D. Brunel, "Electrostatic force microscopy and Kelvin force microscopy as a probe of the electrostatic and electronic properties of carbon nanotubes," in Scanning Probe Microscopy in Nanoscience and Nanotechnology, ed: Springer, pp. 89-128, 2010.
[25] Bruker corporation, DIMENSION ICON MANUAL-I (004-1023-000), pp 381, 2008.
[26] Vecco corporation, "Electrical Characterization with Scanning Probe Microscopes," 2004.
[27] H. Jacobs, P. Leuchtmann, O. Homan, and A. Stemmer, "Resolution and contrast in Kelvin probe force microscopy," Journal of Applied Physics, vol. 84, pp. 1168-1173, 1998.
[28] F. Yamada and I. Kamiya, "Subsurface measurement of nanostructures on GaAs by electrostatic force microscopy," Applied Surface Science, vol. 271, pp. 131-135, 2013.
[29] F. Marchi, R. Dianoux, H. J. H. Smilde, P. Mur, F. Comin, and J. Chevrier, "Characterisation of trapped electric charge carriers behaviour at nanometer scale by electrostatic force microscopy," Journal of Electrostatics, vol. 66, pp. 538-547, 2008.
[30] S. Y. Luchkin, H.-Y. Amanieu, D. Rosato, and A. L. Kholkin, "Li distribution in graphite anodes: A Kelvin Probe Force Microscopy approach," Journal of Power Sources, vol. 268, pp. 887-894, 2014.
[31] X. Zhu, C. S. Ong, X. Xu, B. Hu, J. Shang, H. Yang, et al., "Direct observation of lithium-ion transport under an electrical field in LixCoO2 nanograins," Sci Rep, vol. 3, p. 1084, 2013.
[32] N. Starostina and P. West, "Part II: sample preparation for AFM particle characterization," Pacific Nanotechnology Inc., Santa Clara, CA, pp. 1-10, 2006.
[33] H. Kawano, "Effective work functions for ionic and electronic emissions from mono- and polycrystalline surfaces," Progress in Surface Science, vol. 83, pp. 1-165, 2008.
[34] S. Halas and T. Durakiewicz, "Work functions of elements expressed in terms of the Fermi energy and the density of free electrons," Journal of Physics: Condensed Matter, vol. 10, p. 10815, 1998.
[35] L. M. Porter and R. F. Davis, "A critical review of ohmic and rectifying contacts for silicon carbide," Materials Science and Engineering: B, vol. 34, pp. 83-105, 1995.
[36] W. Mackie, T. Xie, and P. Davis, "Field emission from carbide film cathodes," Journal of Vacuum Science & Technology B, vol. 13, pp. 2459-2463, 1995.
[37] J. F. Watts and J. Wolstenholme, "An introduction to surface analysis by XPS and AES," An Introduction to Surface Analysis by XPS and AES, by John F. Watts, John Wolstenholme, pp. 224. ISBN 0-470-84713-1. Wiley-VCH, May 2003., p. 224, 2003.
[38] T. Takahagi and A. Ishitani, "XPS study on the surface structure of carbon fibers using chemical modification and C1s line shape analysis," Carbon, vol. 26, pp. 389-395, 1988.
[39] M. R. Alexander, R. Short, F. Jones, W. Michaeli, and C. Blomfield, "A study of HMDSO/O 2 plasma deposits using a high-sensitivity and-energy resolution XPS instrument: curve fitting of the Si 2p core level," Applied Surface Science, vol. 137, pp. 179-183, 1999.
[40] G. P. López, D. G. Castner, and B. D. Ratner, "XPS O 1s binding energies for polymers containing hydroxyl, ether, ketone and ester groups," Surface and interface analysis, vol. 17, pp. 267-272, 1991.
[41] B. Gao, S. Sinha, L. Fleming, and O. Zhou, "Alloy formation in nanostructured silicon," Advanced Materials, vol. 13, pp. 816-819, 2001.
[42] B. Guo, J. Shu, Z. Wang, H. Yang, L. Shi, Y. Liu, et al., "Electrochemical reduction of nano-SiO 2 in hard carbon as anode material for lithium ion batteries," Electrochemistry Communications, vol. 10, pp. 1876-1878, 2008.
[43] L. Su, Z. Zhou, and M. Ren, "Core double-shell Si@ SiO 2@ C nanocomposites as anode materials for Li-ion batteries," Chemical communications, vol. 46, pp. 2590-2592, 2010.
[44] J. Yang, Y. Takeda, N. Imanishi, C. Capiglia, J. Xie, and O. Yamamoto, "SiO x-based anodes for secondary lithium batteries," Solid State Ionics, vol. 152, pp. 125-129, 2002.
[45] Y. Lu, M. Muñoz, C. Steplecaru, C. Hao, M. Bai, N. Garcia, et al., "Electrostatic force microscopy on oriented graphite surfaces: coexistence of insulating and conducting behaviors," Physical review letters, vol. 97, p. 076805, 2006.
[46] A. Stesmans and V. Afanas' ev, "Si dangling-bond-type defects at the interface of (100) Si with ultrathin layers of SiOx, Al2O3, and ZrO2," Applied physics letters, vol. 80, p. 1957, 2002.