簡易檢索 / 詳目顯示

研究生: 蕭勝富
Hsiao, Sheng-Fu
論文名稱: 間極式磁致動器之有限元素法磁場分析
Finite Element Analysis for Magnetic Field of Interpole Actuator
指導教授: 林瑞禮
Lin, Ray-Lee
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 218
中文關鍵詞: 三維磁致動系統磁致動器磁性藥物有限元素法
外文關鍵詞: 3-D magnetic actuating system, magnetic actuator, magnetic drug, finite element method
相關次數: 點閱:133下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一間極式磁致動器。三維磁致動系統係以磁致動器磁化磁性藥物,並感應一磁力於磁性藥物上。藉由使用感應於磁性藥物上的磁力導引藥物至靶的位置。
    然而,傳統磁致動器需增加相電流來增強感應於藥物上的磁力,亦造成較大的功耗損失。本論文提出之間極式磁致動器,俾使降低相電流同時增強感應於藥物上的磁力。此外,藉由使用有限元素法(FEM)軟體COMSOL®,俾以分析磁致動器的磁場與計算感應於藥物上的磁力。
    最後,實做一間極式磁致動器的雛型結構以驗證所提出之間極式磁致動器能產生較強的磁場。

    This thesis presents an interpole actuator for the 3-D magnetic actuating system. In the 3-D magnetic actuating system, the magnetic actuator generates the magnetic field to magnetize the magnetic drug, and then the magnetic force is induced on the magnetic drug. However, the magnetic force is enhanced by increasing the phase current, which causes greater power consumption. Therefore, the interpole actuator is proposed in order to reduce the phase currents while increasing the magnetic force induced on the magnetic drug. Using the finite element method (FEM), the magnetic field of the magnetic actuator is analyzed. Moreover, the magnetic force induced on the magnetic drug is calculated.
    Finally, the prototype of the proposed interpole actuator for the 3-D magnetic actuating system is implemented to verify that the magnitude of the magnetic flux density vector in the proposed interpole actuator is greater than that in the conventional actuator.

    CHAPTER 1. INTRODUCTION 1 1.1. Background 1 1.2. Motivation 5 1.3. Thesis Outline 6 CHAPTER 2. APPLICATION OF FINITE ELEMENT METHOD TO MAGNETIC FIELD ANALYSIS 7 2.1. Introduction 7 2.2. Maxwell』s Equations and Potentials 8 2.3. Boundary Conditions 11 2.3.1. Magnetic-Insulation Boundary Condition 11 2.3.2. Continuity Boundary Condition 12 2.4. Magnetic Force 13 2.5. Summary 14 CHAPTER 3. FINITE ELEMENT ANALYSIS OF MAGNETIC ACTUATORS 15 3.1. Introduction 15 3.2. Review of Conventional Actuator 16 3.2.1. Analysis of Flux Distribution 18 3.2.2. Analysis of Magnetic Flux Density 19 3.2.3. Analysis of Magnetic Force 23 3.3. Proposed Interpole Actuator 26 3.3.1. Analysis of Flux Distribution 28 3.3.2. Analysis of Magnetic Flux Density 29 3.3.3. Analysis of Magnetic Force 41 3.4. Proposed 2-D Magnetic Vector Control of Interleaved Exciting 51 3.5. Summary 56 CHAPTER 4. EXPERIMENTAL RESULTS 57 4.1. Introduction 57 4.2. Implementation of Magnetic Actuators 58 4.3. Experimental Results at Different Distance Conditions 60 4.4. Experimental Results at Different Angle Conditions 64 4.5. Experimental Results of Magnetic Navigation 68 4.6. Summary 75 CHAPTER 5. CONCLUSIONS AND FUTURE WORKS 76 REFERENCES 78 APPENDIX A. DETAILED DERIVATION OF EQUATION 81 A.1. Derivation of 81 A.2. Derivation of 82 APPENDIX B. FINITE ELEMENT ANALYSIS OF CONVENTIONAL ACTUATOR 83 B.1. Analysis of Flux Distribution 83 B.2. Analysis of Magnetic Flux Density 85 B.3. Analysis of Magnetic Force 92 APPENDIX C. FINITE ELEMENT ANALYSIS OF PROPOSED INTERPOLE ACTUATOR 99 C.1. Analysis of Flux Distribution 99 C.2. Analysis of Magnetic Flux Density 101 C.3. Analysis of Magnetic Force 108 APPENDIX D. IMPLEMENTATION AND EXPERIMENTAL RESULTS OF CONVENTIONAL ACTUATOR 115 D.1. Dimensional Drawings 115 D.2. Winding Diagram 116 D.3. Experimental Results at Different Distance Conditions 117 D.4. Experimental Results at Different Angle Conditions 119 APPENDIX E. IMPLEMENTATION AND EXPERIMENTAL RESULTS OF PROPOSED INTERPOLE ACTUATOR 124 E.1. Dimensional Drawings 124 E.2. Winding Diagram 125 E.3. Experimental Results at Different Distance Conditions 126 E.4. Experimental Results at Different Angle Conditions 128 APPENDIX F. MAGNETIC CHARACTERISTICS OF Fe3O4 PARTICLES 133 APPENDIX G. NAVIGATION OF MAGNETIC DRUG IN BLOOD WITH MAGNETIC FIELD 150 APPENDIX H. COMSOL® FOR MAGNETIC FIELD ANALYSIS OF INTERPOLE ACTUATOR 159 H.1. Model Navigator 159 H.2. Options and Settings 160 H.3. Geometry Modeling 161 H.4. Physics Settings 167 H.4.1. Boundary Settings 167 H.4.2. Subdomain Settings 168 H.5. Mesh Generation 173 H.6. Computing Solution 174 H.7. Postprocessing and Visualization 175 H.7.1. Plotted Contour of Magnetic Potential 175 APPENDIX I. COMSOL® FOR MAGNETIC FORCE CALCULATION 177 I.1. Model Navigator 177 I.2. Options and Settings 178 I.3. Geometry Modeling 179 I.4. Physics Settings 180 I.4.1. Boundary Settings 180 I.4.2. Subdomain Settings 181 I.5. Mesh Generation 186 I.6. Computing Solution 187 I.7. Postprocessing and Visualization 189 I.7.1. Calculation of Magnetic Force 189 APPENDIX J. COMSOL® FOR MAGNETIC NAVIGATION IN BLOOD 191 J.1. Model Navigator 191 J.2. Options and Settings 195 J.2.1. Constants 195 J.2.2. ODE 196 J.3. Geometry Modeling 197 J.4. Physics Settings 199 J.4.1. Boundary Settings 199 J.4.2. Subdomain Settings 202 J.5. Mesh Generation 208 J.6. Computing Solution 211 J.7. Postprocessing and Visualization 217 J.7.1. Plotted w Displacement 217 VITA. 218

    [1] 「The top ten causes of death,」 Fact Sheet, no. 310, Nov. 2008 [Online]. Available: http://www.who.int/entity/mediacentre/factsheets/fs310_2008.pdf
    [2] X. H. Peng, X. Qian, H. Mao, A. Y. Wang, Z. Chen, S. Nie, and D. M. Shin, 「Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy,」 Int. J. Nanomed., vol. 3, pp. 311-321, 2008.
    [3] A. S. Lübbe, C. Alexiou, and C. Bergemann, 「Clinical applications of magnetic drug targeting,」 J. Surg. Res., vol. 95, pp. 200-206, 2001.
    [4] J. Ragaz, S. M. Jackson, N. Le, I. H. Plenderleith, J. J. Spinelli, V. E. Basco, K. S. Wilson, M. A. Knowling, C. M. L. Coppin, M. Paradis, A. J. Coldman, and I. A. Olivotto, 「Adjuvant radiotherapy and chemotherapy in node-positive premenopausal women with breast cancer,」 N. Engl. J. Med., vol. 337, pp. 956-962, 1997.
    [5] J. H. Schiller, D. Harrington, C. P. Belani, C. Langer, A. Sandler, J. Krook, J. Zhu, and D. H. Johnson, 「Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer,」 N. Engl. J. Med., vol. 346, no. 2, pp. 92-98, Jan. 2002.
    [6] M. Overgaard, P. S. Hansen, J. Overgaard, C. Rose, M. Andersson, F. Bach, M. Kjaer, C. C. Gadeberg, H. T. Mouridsen, M. B. Jensen, and K. Zedeler, 「Postoperative radiotherapy in high-risk premenopausal women with breast cancer who receive adjuvant chemotherapy,」 N. Engl. J. Med, vol. 337, no. 14, pp. 949-955, Oct. 1997.
    [7] E. Kapiteijn, C. A. M. Marijnen, I. D. Nagtegaal, H. Putter, W. H. Steup, T. Wiggers, H. J. T. Rutten, L. Pahlman, B. Glimelius, J. H. J. M. V. Krieken, J. W. H. Leer, and C. J. H. V. D. Velde, 「Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer,」 N. Engl. J. Med., vol. 345, no.9, pp. 638-646, Aug. 2001.
    [8] D. M. Berizel, M. E. Albers, S. R. Fisher, R. L. Scher, W. J. Richtsmeier, V. Hars, S. L. George, A. T. Huang, and L. R. Prosnitz, 「Hyperfractionated irradiation with or without concurrent chemotherapy for locally advanced head and neck cancer,」 N. Engl. J. Med., vol. 338, no. 25, pp. 1798-1804, Jun. 1998.
    [9] L. Brannon-Peppas, and J. O. Blanchette, 「Nanoparticle and targeted systems for cancer therapy,」 Adv. Drug Deliv. Rev., vol. 56, pp. 1649-1659, 2004.
    [10] C. Alexiou, R. J. Schmid, R. Jurgons, M. Kremer, G. Wanner, C. Bergemann, E. Huenges, T. Nawroth, W. Arnold, and F. G. Parak, 「Targeting cancer cells: magnetic nanoparticles as drug carriers,」 Eur Biophys J., vol. 35, pp. 446-450, 2006.
    [11] S. Nishijima, S. Takeda, F. Mishima, Y. Tabata, M. Yamamoto, J. Joh, H. Iseki, Y. Muragaki, A. Sasaki, K. Jun, and N. Saho, 「A study of magnetic drug delivery system using bulk high temperature superconducting magnet,」 IEEE Trans. Appl. Supercond., vol. 18, no. 2, pp. 874-877, 2008.
    [12] F. Mishima, S. Takeda, Y. Izumi, and S. Nishijima, 「Development of magnetic field control for magnetically targeted drug delivery system using a superconducting magnet,」 IEEE Trans. Appl. Supercond., vol. 17, no. 2, pp. 2303-2306, 2007.
    [13] J. Chomoucka, J. Drbohlavova, D. Huska, V. Adam, R. Kizek, and J. Hubalek, 「Magnetic nanoparticles and targeted drug delivering,」 Pharm. Res., vol. 62, pp. 144-149, Aug. 2010.
    [14] J. Dobson, 「Magnetic nanoparticles for drug delivery,」 Drug. Dev. Res., vol. 67, pp. 55-60, 2006.
    [15] R. Fernández-Pacheco, C. Marquina, J. G. Valdivia, M. Gutiérrez, M. S. Romero, R. Cornudella, A. Laborda, A. Viloria, T. Higuera, A. García, J. A. G. d. Jalón, and M. R. Ibarra, 「Magnetic nanoparticles for local drug delivery using magnetic implants,」 J. Magn. Magn. Mater., vol. 311, pp. 318-322, 2007.
    [16] G. Poste and R. Kirsh, 「Site–specific (targeted) drug delivery in cancer therapy,」 Bio/Technology, vol. 1, pp. 869-878, 1983.
    [17] S. Nishijima, and S. Takeda, 「Three-dimensional guidance system and method, and drug delivery system,」 U.S. Patent Application Publication, US 20070299550A1, 2007.
    [18] B. S. Guru and H. R. Hiziroğlu, Electromagnetic Field Theory Fundamentals. 2rd ed. UK: Cambridge University Press, 2004.
    [19] User』s Guide: COMSOL Multiphysics, Vers. 3.5a, COMSOL, Nov. 2008.
    [20] Y. Mitsutake, K. Harada, Y. Ishihara, T. Todaka, and K. Hirata, 「Influence of magnetization characteristics on electromagnetic force analysis,」 IEEE Trans. Magn., vol. 9, no. 3, pp. 180-184, May/Jun. 1994.
    [21] User』s Guide: AC/DC Module, Vers. 3.5a, COMSOL, Nov. 2008.
    [22] J. L. Coulomb, 「A methodology for the determination of global electromechanical quantities from a finite element analysis and its application to the evaluation of magnetic forces, torques and stiffness,」 IEEE Trans. Magn., vol. 19, no. 6, Nov. 1983.
    [23] G. Reyne, J. C. Sabonnadiere, J. L. Coulomb, and P. Brissonneau, 「A survey of the main aspects of magnetic forces and mechanical behavior of ferromagnetic materials under magnetization,」 IEEE Trans. Magn., vol. 23, no. 5, Sep. 1987.
    [24] P. Gangopadhyay, S. Gallet, E. Franz, A. Persoons, and T. Verbiest, 「Novel superparamagnetic core (shell) nanoparticles for magnetic targeted drug delivery and hyperthermia treatment,」 IEEE Trans Magn., vol. 41, no. 10, pp. 4194-4196, Oct. 2005.

    下載圖示 校內:2015-11-01公開
    校外:2015-11-01公開
    QR CODE