簡易檢索 / 詳目顯示

研究生: 吳震緯
Wu, Jhen-Wei
論文名稱: 利用微奈米壓印技術提升有機太陽能電池效率之研究
Efficiency improvement of polymer solar cells by nanoimprinting
指導教授: 施權峰
Shih, Chuan-Feng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 93
中文關鍵詞: 太陽能電池有機壓印
外文關鍵詞: organic, solar cell, nanoimprint
相關次數: 點閱:73下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文主要的研究方向著重在奈米壓印對於有機太陽能電池的影響,我們使用P3HT和PCBM兩種高分子材料混合當作太陽能電池的主動層,製作最基本的結構(Glass/ITO/PEDOT:PSS/P3HT&PCBM/Al)。藉著調整主動層的厚度以及元件後退火的溫度和時間來找出對元件基本參數較佳的條件。
      然後將一個經過蝕刻處理的Silicon基板當作模具,在室溫下對主動層做奈米壓印,並探討薄膜表面型態的變化以及壓力的影響。可以發現薄膜表面型態的變化能夠幫助光電流的增加,而壓力影響到元件的開路電壓以及填充因子,讓有機太陽能電池的效率提昇。
      最後會探討在加熱的情況下,使用平坦的Si基板對元件背電極壓印。觀察在加熱結合加壓的情況下,對元件效能的提昇。藉由這種方式來讓金屬電極以及有機薄膜之間有更好的接觸,增加載子的遷移率,幫助元件的短路電流和填充因子增加。

    The main research in this paper discusses the effect caused by nanoimprinting for organic solar cells. We use two types of mixed polymer materials, P3HT and PCBM, as active layer of solar cells and produce the basic structure (Glass / ITO / PEDOT: PSS/P3HT & PCBM / Al). By adjusting the thickness of active layer, temperature and time of post-annealing, the device with better performance can be achieved.
    The technology of nanoimprinting is applied here. We use silicon substrate, which surface has been etched, as the stamp and apply nanoimprinting on the active layer at room temperature. Then we discuss the change of film surface and pressure effect for film. We find the change of film surface increase the photocurrent and the pressure can affect components of the open circuit voltage and fill factor. They can make the organic solar cell more efficiency.
    At final, we use flat substrate of Si stamp to imprinting the back electrode of device at heating condition. And observe the improvement of device performance under both heating and pressurizing. By applying this method, better contact between metal electrode and organic film can be achieved, and the mobility of carriers is increased, too. The short-circuit current and fill factor of components are improved.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 第一章 研究背景與動機 1 1-1 太陽能產業的發展 1 1-2 各種太陽能電池的介紹 2 1-3 奈米壓印技術介紹 4 1-4 研究動機 6 1-5 論文架構及研究方向 7 第二章 太陽能電池的原理 8 2-1 太陽能電池原理 8 2-1-1 P-N接面太陽能電池 8 2-1-2 有機太陽能發電原理 10 2-2 太陽能電池的特性分析 11 2-2-1 開路電壓 (Open circuit voltage, Voc) 11 2-2-2 短路電流 (Short circuit, Isc) 12 2-2-3 填充因子 (Fill factor) 12 2-2-4 能量轉換效率(Power conversion efficiency, PCE) 14 2-2-5 外部量子效率(External quantum efficiency, EQE) 14 2-3 空間電荷侷限電流(Space charge limited current) 15 2-4 光入射多層結構後在各層的分佈 17 第三章 實驗流程 22 3-1 ITO玻璃清洗與圖樣化 22 3-1-1 ITO玻璃清洗 22 3-1-2 ITO表面圖樣化 22 3-2 太陽能電池元件製作 23 3-2-1 ITO玻璃清洗 24 3-2-2 電洞傳輸層塗佈 24 3-2-3主動層塗佈 25 3-2-4 背電極蒸鍍 25 3-2-5 元件封裝和退火 26 3-3 將奈米壓印應用於太陽能電池實驗流程 26 3-3-1 Si基板製作流程 26 3-3-2 主動層壓印 27 3-3-3 製作完後平壓 28 3-3-4 製作完後熱壓 28 3-4 製作Electron only元件 29 3-5 實驗量測 29 3-5-1 I-V的照光特性曲線量測 29 3-5-2 IPCE量測 29 3-5-3 微拉曼光譜儀 30 3-5-4 原子力顯微鏡 (AFM) 30 3-5-5 掃描式電子顯微鏡 (SEM) 30 第四章 結果與討論 43 4-1 前言 43 4-2 元件參數調變 43 4-2-1主動層轉速調變 43 4-2-2 退火溫度參數調變 45 4-2-3 退火時間調變 47 4-2-4 結論 47 4-3 利用奈米壓印技術對元件的主動層施壓 48 4-3-1 探討主動層做壓印對元件的影響 48 4-3-2 討論表面變化對光電流提昇 49 4-3-3 討論壓印對填充因子的提昇 52 4-3-4 探討在純壓力的情況下對主動層造成的影響 55 4-3-5 結論 56 4-4 使用熱壓對整體元件的影響 56 4-4-1 探討熱壓後元件的增益 57 4-4-2 觀察電子的遷移率在經由熱壓後的影響 58 4-4-3 結論 60 第五章 結論與未來規劃 88 5-1 結論 88 5-1-1 基本元件參數改善 88 5-1-2 奈米壓印對元件效率的改進 88 5-2 未來規劃 88 參考文獻 90

    [1] 黃信雄, “因應「氣候變化綱要公約」的我國太陽能應用策略”, 太陽能學刊,第2卷,第1期,39-45(1997).
    [2] C.W. Tang, “Two-layer organic photovoltaic cell”, Appl. Phy. Lett. 48,pp.183-185(1986).
    [3] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers”, Appl. Phys. Lett.67, 3114 (1995).
    [4] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom, “Imprint Lithography with 25-Nanometer Resolution”, Science, 272, 85 (1996).
    [5] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom, “Nanoimprint lithography”, J. Vac. Sci. Technol. B 14, 4129 (1996).
    [6] T. Borzenko, M. Tormen, G. Schmidt, L. W. Molenkamp, and H. Janssen,“Polymer bonding process for nanolithography”, Appl. Phys. Lett. 79, 2246 (2001).
    [7] 奈米壓印(Nanoimprint Lithography,NIL)技術的最新應用發展報導, 材料世界網編輯室(2007).
    [8] 奈米壓印(Nanoimprint Lithography,NIL)相關材料的最新研發現狀, 材料世界網編輯室(2007).
    [9] H. Neugebauer, C. Brabec, J.C. Hummelen, N.S. Sariciftci, “stability and photo degradation mechanisms of conjugated polymer/fullerene plastic solar cells”, Solar Energy Material & Solar Cells, 61, p.p.35-42(2000).
    [10] Y, Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”, Nature materials, vol4(2005).
    [11] M. R. Reyes, K. Kim, and D. L. Carroll, “High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1- phenyl-(6,6)C61 blends”, Appl. Phys. Lett. 87, 083506(2005).
    [12] W. Wang, H. B. Wu, C. Y. Yang, C. Luo, U. Zhang, J. W. Chen, and Y. Cao, “High-efficiency polymer photovoltaic devices from regioregular-poly(3-hexylthiophene-2,5-diyl) and [6,6]-phenyl-C61-butyric acid methyl ester processed with oleic acid surfactant”, Appl. Phys. Lett. 90, 183512 (2007).
    [13] W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology”, Adv. Funct. Mater. 15, 1617 (2005).
    [14] D. M. Nanditha M. Dissanayake, A. A. D. T. Adikaari, Richard J. Curry, Ross A. Hatton, and S. R. P. Silva, “Nanoimprited large area heterojunction pentacene-C60 photovoltaic device”, Appl. Phys. Lett. 90, 253502 (2007).
    [15] D. M. N. M. Dissanayake, A. A. D. T. Adikaari, and S. R. P. Silva, “Enhanced photovoltaic performance in nanoimprinted pentacene-PbS nanocrystal hybrid device”, Appl. Phys. Lett. 92, 093308 (2008).
    [16] M. Aryal, F. Buyukserin, K. Mielczarek, X. M. Zhao, J. Gao, A. Zakhidov, W. Hu, “Imprinted large-scale high density polymer nanopillars for organic solar cells”, J. Vac. Sci. Technol. B, Vol. 26, No. 6 (2008).
    [17] Donald A. Neamen, “半導體物理及元件 (第三版)”.
    [18] 王裕文, “主要吸收層結構及電洞傳輸層對有機高分子混合型異質接面太陽能電池之影響”, 國立東華大學碩士論文.
    [19] 鄭弘彬, “有機無機混合太陽電池製程之研究”, 國立清華大學.
    [20] P. Wrfel, “Physics of Solar Cells”.
    [21] C. Brabec, V. Dyakonov, J. Parisi, N. S. Sariciftci, “Organic Photovoltaics (Concepts and REALIZATION)”.
    [22] S. S. Sun, N. S. Sariciftci, “Organic Photovoltaics (Mechanisms, Materials and Devices)”.
    [23] A. J. MOUL, K. MEERHOLZ, “Minimizing optical losses in bulk heterojunction polymer solar cells”, Appl. Phys. B 86, 721-727 (2007).
    [24] J. Huang, G. Li, Y. Yang, “A Semi-transparent Plastic Solar Cell Fabricated by a Lamination Process”, Adv. Mater., 20, 415-419(2008).
    [25] G. M. Ng, E. L. Kietzke, T. Kietzke, L. W. Tan, P. K. Liew, F. Zhu, “Optical enhancement in semitransparent polymer photovoltaic cells”, Appl. Phys. Lett. 90, 103505(2007).
    [26] Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, J. R. Durrant, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene”, Appl. Phys. Lett. 86, 063502 (2005).
    [27] F. C. Chen, Y. K. Lin, and C. J. Ko, “Submicron-scale manipulation of phase separation in organic solar cells”, Appl. Phys. Lett. 92, 023307(2008).
    [28] M. Reyes-Reyes, K. Kim, D. L. Carroll, “High-efficiency photovoltaic device based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl) propyl-1-phenyl-(6,6)C61 blends”, Appl. Phys. Lett. 87, 083506 (2005).
    [29] P. Peumans, S. Uchida, and S. R. Forrest, “Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films”, Nature (London) 425, 158 (2003).
    [30] 葛祖榮C. J. Ko, 黃文奎W. K. Huang, 陳方中F. C. Chen, “有機高分子太陽能電池的發展現況”, 工業材料雜誌, 230期95年2月.
    [31] E. Lioudakis, A. Othonos, I. Alexandrou, and Y. Hayashi, “Optical properties of conjugated poly(3-hexylthiophene)/[6,6]-phenylC61-butyric acid methyl ester composites”, J. Appl. Phys. 102, 083104(2007).
    [32] J. J. Yun, J. Peet, N. S. Cho, G. C. Bazan, S. J. Lee, and M. Moskovits, “Insight into the Raman shifts and optical absorption changes upon annealing polymer/fullerene solar cells”, Appl. Phys. Lett. 92, 251912(2008).

    下載圖示 校內:2012-07-28公開
    校外:2012-07-28公開
    QR CODE