| 研究生: |
范振毅 Fan, Chen-Yi |
|---|---|
| 論文名稱: |
離岸風場通過以電壓源轉換器為基礎之多饋入式高壓直流鏈連接到電網之穩定度分析 Stability Analysis of Offshore Wind Farms Connected to Power Grids through Multi-Infeed High-Voltage Direct-Current Links based on Voltage-Source Converter |
| 指導教授: |
王醴
Wang, Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 187 |
| 中文關鍵詞: | 雙饋式感應發電機 、電壓源轉換器 、高壓直流傳輸系統 、強弱電網 、實際風速 、穩定度 |
| 外文關鍵詞: | Doubly-fed induction generator, voltage-source converter, high-voltage direct-current transmission system, strong/weak grid, actual wind speed, stability |
| 相關次數: | 點閱:67 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文首先提出以雙饋式感應發電機為基礎之聚集等效離岸式風場,經由電壓源轉換器為基礎之高壓直流傳輸系統連接至電網,形成一個單饋入式高壓直流傳輸系統,藉由穩態與動暫態之模擬,分析該系統分別連接至強、弱電網之穩定度特性。本論文再將單饋入式高壓直流傳輸系統擴展為多饋入式高壓直流傳輸系統,並比較多饋入式高壓直流傳輸系統對系統穩定度之改善特性。在穩態特性方面,本論文分析了不同風速、不同連接傳輸線長度對系統穩定度之影響,在動態模擬方面完成實際風速之模擬,在暫態部分完成匯流排電壓驟降與電網端電壓三相短路故障之模擬。由模擬結果分析得知,不同匯流排間傳輸線長度以及特性,皆會影響系統穩定度,並且當單饋入式系統連接至弱電網,若發生嚴重故障時,系統響應將會出現不穩定之發散特性。
This thesis first proposes an equivalent aggregated offshore wind farm based on doubly-fed induction generator fed to a power grid through a single-infeed high-voltage direct-current transmission system (SI-HVDC) based on voltage-source converter. Through steady-state, dynamic, and transient simulations, the characteristics of the SI-HVDC connected to strong and weak grids are performed. This thesis then extends the SI-HVDC to be multi-infeed high-voltage direct-current transmission systems (MI-HVDC) to compare the characteristic improvement of using the MI-HVDC. Steady-state characteristics of the studied systems under different wind speeds as well as distinct lengths and types of tie lines are achieved. Dynamic and transient simulations of the studied systems subject to a wind-speed disturbance, a three-phase fault at the power grid, and the bus-voltage sag are also carried out. According to the simulation results of the studied systems, the length and type of the tie lines between different buses will affect the stability of the studied systems while the responses of the the studied SI-HVDC connected to a weak grid subject to a severe fault can be unstable with divergence.
[1] 經濟部,教育百科,2018年。[Online]. Available: https://pedia.cloud.edu.tw/Entry/Detail/?title=%E4%BA%AC%E9%83%BD%E8%AD%B0%E5%AE%9A%E6%9B%B8, retrieved date: Mar. 8, 2019.
[2] 姜唯,2018年全球能源報告分析:碳排增加但速度趨緩,台灣環境諮詢協會,2018年。[Online]. Available: https://e-info.org.tw/node/217623, retrieved date: Mar. 8, 2019.
[3] 台灣經貿網,我國風力發電產業發展現況與未來展望,2018年。 [Online]. Available: https://info.taiwantrade.com/biznews/%E6%88%91%E 5%9C%8B%E9%A2%A8%E5%8A%9B%E7%99%BC%E9%9B%BB%E7%94%A2%E6%A5%AD%E7%99%BC%E5%B1%95%E7%8F%BE%E6%B3%81%E8%88%87%E6%9C%AA%E4%BE%86%E5%B1%95%E6%9C%9B-1662483.html, retrieved date: Apr. 16, 2019.
[4] 經濟部能源局,再生能源知識館,2018年。 [Online]. Available: https://www.moeaboe.gov.tw/ECW/populace/home/Home.aspx, retrieved date: Apr. 16, 2019.
[5] 李建興,台灣海峽的綠金寶藏,遠見雜誌,2018年。[Online]. Available: https://www.gvm.com.tw/article.html?id=42527, retrieved date: Mar. 8, 2019.
[6] 行政院,全力推動離岸風電-讓臺灣成為全球離岸風電示範場,2018年。 [Online]. Available: https://www.ey.gov.tw/Page/9277F759E41CCD91/9 eebb9b8-490b-4357-963f-a48a981852a7, retrieved date: Apr. 16, 2019.
[7] ABB, “改變世界的ABB技術,” [Online]. Available: http://www.abb.com.tw/cawp/seitp202/72fb895b9e2bb3e3c1257746000f8444.aspx, retrieved date: Apr. 15, 2019.
[8] M. Reza, L. Andreasson, G. Persson, and A. Bostrom, “HVDC and FACTS potentials for Indonesian electrical grid infrastructure,” in Proc. 2011 International Conference on Electrical Engineering and Informatics, Bandung, Indonesia, Jul. 17-19, 2011, pp. 1-4.
[9] ABB, “經濟和優勢環境,” [Online]. Available: https://new.abb.com/s ystems/hvdc/zh/why-hvdc/economic-and-environmental-advantages, retriev ed date: Apr. 15, 2019.
[10] C. Guo, Y. Zhang, A. M. Gole, and C. Zhao, “Analysis of dual-infeed HVDC with LCC-HVDC and VSC-HVDC,” IEEE Trans. Power Delivery, vol. 27, no. 3, pp. 1529-1537, Jul. 2012.
[11] R. E. Torres-Olguin, M. Molinas, and T. Undeland, “Offshore wind farm grid integration by VSC technology with LCC-based HVDC transmission,” IEEE Trans. Sustainable Energy, vol. 3, no. 4, pp. 899-907, Oct. 2012.
[12] DNV.GL,併網可再生能源:弱電網面臨的嚴峻挑戰。 [Online]. Available: https://www.dnvgl.com/cn/article/page-86575, retrieved date: Apr. 16, 2019.
[13] O. E-Oni, I. E-Davidsom, and K. N. I. Mbangula, “A review of LCC-HVDC and VSC-HVDC technologies and applications,” in Proc. 2016 IEEE 16th International Conference on Environment and Electrical Engineering, Florence, Italy, Jun. 7-10, 2016, pp. 1-7.
[14] G. Shi, Z. Chen, and X. Cai, “Overview of multi-terminal VSC-HVDC transmission for large offshore wind farms,” in Proc. 2011 International Conference on Advanced Power System Automation and Protection, Beijing, China, Jun. 7-10, 2016, pp. 1324-1329.
[15] J. Z. Zhou, H. Ding, S. Fan, Y. Zhang, and A. M. Gole, “Impact of short-circuit ratio and phase-locked-loop parameters on the small-signal behavior of a VSC-HVDC converter,” IEEE Trans. Power Delivery, vol. 29, no. 5, pp. 2287-2296, Oct. 2014.
[16] K. Karthi, R. Radhakrishnan, J. M. Baskaran, and L. S. Titus, “Performance analysis on various controllers of VSC-HVDC transmission systems,” in Proc. 2016 IEEE International Conference on Computational Intelligence and Computing, Chennai, India, Dec. 15-17, 2016, pp. 1-6.
[17] Y. Liu and Z. Chen, “Short circuit ratio analysis of multi-infeed HVDC system with a VSC-HVDC link,” in Proc. IECON 2011-37th Annual Conference of the IEEE Industrial Electronics Society, Melbourne, VIC, Australia, Nov. 7-10, 2011, pp. 949-954.
[18] J. G. Slootweg and W. L. Kling, “Aggregated modelling of wind parks in power system dynamics simulations,” in Proc. 2003 IEEE Bologna Power Tech Conference Proceedings, Bologna, Italy, Jun. 23-26, 2003, pp. 1-6.
[19] C. Feltes, H. Wrede, F. W. Koch, and I. Erlich, “Enhanced fault ride through method for wind farms connected to the grid through VSC-based HVDC transmission,” IEEE Trans. Power Systems, vol. 24, no. 3, pp. 1537-1546, Aug. 2009.
[20] L. Wang, Z.-H. Yang, X.-Y. Lu, and A. V. Prokhorov, “Stability analysis of a hybrid multi-infeed HVDC system connected between two offshore wind farms and two power grids,” IEEE Trans. Industry Applications, vol. 53, no. 3, pp. 1824-1833, May/Jun. 2017.
[21] X. Chen, A. M. Gole, and M. Han, “Analysis of mixed inverter/rectifier multi-infeed HVDC systems,” IEEE Trans. Power Delivery, vol. 27, no. 3, pp. 1565-1573, Jul. 2012.
[22] M. F. M. Arani and Y. A. -R. I. Mohamed, “Analysis and performance enhancement of vector controlled VSC in HVDC links connected to very weak grids,” IEEE Trans. Power Systems, vol. 32, no. 1, pp. 684-693, Jan. 2017.
[23] A. E.-Alvarez, S. Fekriasl, F. Hassan, and O. G.-Bellmunt, “Advanced vector control for voltage source converters connected to weak grids,” IEEE Trans. Power Systems, vol. 30, no. 6, pp. 3072-3081, Nov. 2015.
[24] H.-S. Ko, G. G. Yoon, and W.-P. Hong, “Active use of DFIG-based variable-speed wind-turbine for voltage regulation at a remote location,” IEEE Trans. Power Systems, vol. 22, no. 4, pp. 1916-1925, Nov. 2007.
[25] Y. Liu and Z. Chen, “Stability analysis of multi-infeed HVDC system applying VSC-HVDC,” in Proc. IEEE PES General Meeting, Providence, RI, USA, Jul. 25-29, 2010, pp. 1-7.
[26] B. C. Pal and F. Mei, “Modelling adequacy of the doubly fed induction generator for small-signal stability studies in power systems,” IET Renewable Power Generation, vol. 2, no. 3, pp. 181-190, Sep. 2008.
[27] A. M. S. Al-Bayati, F. M.-David, and J. L. Domínguez-Garcíal, “Aggregated models of wind farms: current methods and future trends,” in Proc. 2016 North American Power Symposium (NAPS), Denver, CO, USA, Sep. 18-20, 2016, pp. 1-6.
[28] F. Mei, “Small-signal modelling and analysis of doubly-fed induction generators in wind power applications,” Ph.D. dissertation, Imperial College London, University of London, London, UK, 2008.
[29] F. Wu, X. P. Zhang, K. Godfrey and P. Ju, “Small signal stability analysis and optimal control of a wind turbine with doubly fed induction generator,” IET Generation, Transmission & Distribution, vol. 1, no. 5, pp. 751-760, Sep. 2007.
[30] H. Li and Z. Chen, “Overview of different wind generator systems and their comparisons,” IET Renewable Power Generation, vol. 2, no. 2, pp. 123-138, Jun. 2008.
[31] M. Kayikci and J. V. Milanovic, “Reactive power control strategies for DFIG-based plants,” IEEE Trans. Energy Conversion, vol. 22, no. 2, pp. 389-396, Jun. 2007.
[32] L. Wang and M. S. T. Nguyen, “Comparative stability analysis of offshore wind and marine-current farms feeding into a power grid using HVDC links and HVAC line,” IEEE Trans. Power Delivery, vol. 28, no. 4, pp. 2162-2171, Oct. 2013.
[33] P. Bresesti, W. L. Kling, R. L. Hendriks, and R. Vailati, “HVDC connection of offshore wind farms to the transmission system,” IEEE Trans. Energy Conversion, vol. 22, no. 1, pp. 37-43, Mar. 2007.
[34] L. Xu, L. Yao, and C. Sasse, “Grid integration of large DFIG-based wind farms using VSC transmission,” IEEE Trans. Power Systems, vol. 22, no. 3, pp. 976-984, Aug. 2007.
[35] L. M. Castro and E. Acha, “A unified modeling approach of multi-terminal VSC-HVDC links for dynamic simulations of large-scale power systems,” IEEE Trans. Power Systems, vol. 31, no. 6, pp. 5051-5060, Nov. 2016.
[36] Y. Liu and Z. Chen, “A flexible power control method of VSC-HVDC link for the enhancement of effective short-circuit ratio in a hybrid multi-infeed HVDC system,” IEEE Trans. Power Systems, vol. 28, no. 2, pp. 1568-1581, May 2013.
[37] G. Wu, J. Liang, X. Zhou, Y. Li, A. Egea-Alvarez, G. Li, H. Peng, and X. Zhang, “Analysis and design of vector control for VSC-HVDC connected to weak grids,” CSEE Journal of Power and Energy Systems, vol. 3, no. 2, pp. 115-124, Jun. 2017.
[38] IEEE Guide for Planning DC Links Terminating at AC Locations Having Low Short-Circuit Capacities, IEEE Standard 1204-1997, 2003.
[39] X. I. Koutiva, T. D. Vrionis, N. A. Vovos, and G. B. Giannakopoulos, “Optimal integration of an offshore wind farm to a weak AC grid,” IEEE Trans. Power Delivery, vol. 21, no. 2, pp. 987-994, Apr. 2006.
[40] R. Dev and R. K. Pan, “Performance evaluation of HVDC system with ESCR variation,” in Proc. 2012 Students Conference on Engineering and Systems, Allahabad, Uttar Pradesh, India, Mar. 16-18, 2012, pp. 1-6.
[41] L. X. Bui, V. K. Sood, and S. Laurin, “Dynamic interactions between HVDC systems connected to AC buses in close proximity,” IEEE Trans. Power Delivery, vol. 6, no. 1, pp. 223-230, Jan. 1991.
[42] W. Li and X. Xiao, “Impact of STATCOM on the voltage stability of HVDC terminating at location having low SCR,” in Proc. 2016 IEEE International Conference on Power System Technology (POWERCON), Wollongong, Australia, Sep. 28-Oct. 1, 2016, pp. 1-6.
[43] H. Cardenas, L. Zhang, and J. Noel, “Improvement on energy trade capacity for asynchronous power system by application of hybrid multi-infeed direct current transmission system,” in Proc. 2017 IEEE URUCON, Montevideo, Uruguay, Oct. 23-25, 2017, pp. 1-4.
[44] P. Kundur, N. J. Balu, and M. G. Lauby, Power System Stability and Control, New York, NY, USA: McGraw-Hill, 1994.
[45] P. M. Anderson and A. Bose, “Stability simulation of wind turbine systems,” IEEE Trans. Power Apparatus and Systems, vol. PAS-102, no. 12, pp. 3791-3795, Dec. 1983.
[46] E. Rahimi, A. M. Gole, J. B. Davies, I. T. Fernando and K. L. Kent, “Commutation failure analysis in multi-infeed HVDC systems,” IEEE Trans. Power Delivery, vol. 26, no. 1, pp. 378-384, Jan. 2011.
[47] P. M. Anderson and A. A. Fouad, Power System Control and Stability, IA: The Iowa State University Press, Ames, 1977.
[48] 林俊佑,採用高壓直流輸電系統於混合再生能源發電系統之穩定度改善與功率潮流控制,國立成功大學電機工程學系碩士論文,2011年7月。
[49] 謝旻翰,利用超導儲能系統及高壓直流輸電系統於混合超導同步發電機與雙饋式感應發電機之風力發電系統之穩定度改善,國立成功大學電機工程學系碩士論文,2013年7月。
[50] 邊文軒,以電壓源轉換器為基礎之多端饋入式高壓直流輸電系統連接離岸式風場之穩定度分析,國立成功大學電機工程學系碩士論文,2017年7月。
校內:2022-12-31公開