簡易檢索 / 詳目顯示

研究生: 曾玉修
Tseng, Yu-Hsiu
論文名稱: 套管樁基礎於軸向拉力下之變形行為
Deformation responses of jacket foundation under axial tension loads
指導教授: 郭玉樹
Kuo, Yu-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 73
中文關鍵詞: 離岸風力發電套管基礎打樁效應反覆拉力
外文關鍵詞: offshore wind, jacket foundation, pile driving effect, cyclic axial tension load
相關次數: 點閱:77下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來全球暖化及能源耗竭的問題,使各國積極發展再生能源,離岸風電為我國發展再生能源的關鍵項目之一。離岸風機支撐結構影響風機運轉穩定甚鉅,且為我國積極自主建置之離岸風電產業鏈供應元件。目前我國先導型風場採用之支撐結構型式包括大口徑單樁基礎以及套管基礎。離岸風機轉子及塔架結構受到風、波、流造成之週期性載重,作用於上部結構之側向力傳遞至下部樁基礎,於套管基礎支撐結構,將對迎風側與背風側之樁基礎分別產生軸向拉力及壓力。反覆拉力將造成基礎承載力降低,影響風機運轉穩定性。本研究以有限元素模型將打樁效應及反覆拉力下樁周正向應力納入考量,計算套管基礎受靜態及反覆拉力下之拉拔力,評估風機運轉年限內之支撐結構穩定性。
    基樁受拉力作用時,軸向承載力主要由樁身摩擦力提供。對於套管樁基礎,API規範中建議之樁身摩擦力計算經驗公式並未考量打擊樁於安裝過程對樁土系統之影響。本研究以有限元素樁土系統數值模型進行基樁受拉力下之承載力分析,並與Jardine and Standing(2000)之現地打擊樁受靜態及反覆載重試驗成果比對,探討打樁效應對基樁靜態拉拔力之影響。由數值模擬成果可知,若以土壤靜止土壓係數考量打擊樁所受之樁周正向力,則計算所得之軸向承載力會遠小於現地試驗結果。為將打擊樁設置過程中樁周土壤側向壓力增加之反應納入拉拔力計算,數值模擬將側向土壓增加,以計算基樁之靜態拉拔力。對於基樁受反覆拉力後之承載力衰減行為,本研究則以土壤體應變衰減模型將樁周土壤受反覆剪力作用時,土壤體積隨拉力作用次數增加而減小,造成樁周土壤對基樁間正向應力逐漸降低之反應納入考量,以達到樁身摩擦力隨反覆作用次數增加而衰減之目標。模擬結果顯示,當數值模型考量打樁效應時,基樁於反覆拉力作用下之拉拔力與Jardine and Standing(2012)透過現地試驗建立之互制關係圖評估衰減趨勢吻合。
    本研究以9組不同樁長與樁徑數值模型參數分析,評估基樁尺寸對基樁靜態拉拔力之影響。分析結果顯示,當樁徑固定時,增加樁長將使基樁靜態拉拔力提高;當樁長固定時,樁徑越大,則基樁靜態拉拔力越大。當反覆拉力作用時,反覆拉力振幅比越大,基樁反覆拉拔力比隨作用力次數衰減幅度越顯著。而平均反覆拉力比則對基樁反覆拉拔力衰減程度之影響較不顯著。另外,考量打樁效應之反覆拉拔力衰減程度遠小於未考量打樁效應之計算結果;且考量打樁效應之反覆拉拔力於Jardine and Standing(2012)互制關係圖衰減趨勢吻合。

    The pilot offshore wind farm will be built at western coast of Taiwan, for Changbin and Fuhai offshore wind farm, the support structure type of the offshore wind turbines is selected to be jacket foundation, which is high stiffness. The moment caused by the periodic wind and wave force applies on the whole offshore wind turbine constantly. As a result, the piles of support structure are subjected to cyclic axial tension or compression loads. And cyclic tension loads degrade the capacity of the foundation. A finite element model is established to simulate the behavior of pile under cyclic tension loads in this research. The field tests of Jardine and Standing (2000) is documented, and the result of field tests is used to calibrate the numerical model. With considering the effect of pile driving and soil volume degradation due to cyclic tension loads, the result shows that the model can simulate the behavior of the pile under axial tension loads. If the numerical model without considering the effect of pile driving underestimates pullout capacity. When the pile is subjected to cyclic tension loads, the pullout capacity of pile decreases as the number of cycle and amplitude of the cyclic loads increase.

    摘要 i Extended Abstract ii 誌謝 viii 目錄 ix 圖目錄 xi 表目錄 xiv 符號 xv 第一章 緒論 1 1-1 研究背景 1 1-2 研究目的 2 1-3 研究方法 3 1-4 研究架構 4 第二章 鋼管樁基礎 5 2-1 基樁類型 5 2-2 海域打擊樁 7 2-2-1樁壁擠壓樁周土壤(Soil compaction) 9 2-2-2土塞效應(Soil plugging effect) 9 2-2-2摩擦疲勞(Friction fatigue) 11 2-2-3時間效應(Time effect or ageing effect) 12 2-3 打擊樁樁周土壤應力歷史 14 第三章 基樁受軸向拉力之反應 16 3-1 基樁受靜態軸向作用力之變形行為 16 3-2 單樁拉拔力計算 17 3-2-1API 17 3-2-2CPT法 19 3-2-3靜態軸向拉拔力計算結果差異 22 3-3 基樁受反覆拉力之行為 22 3-3-1反覆拉力條件 23 3-3-2反覆拉力下樁周土壤體積變化及徑向應力反應 24 3-3-3反覆拉力下之變形反應 25 3-3-4反覆軸向拉力下承載力衰減行為 27 3-4 樁身摩擦力衰減計算方法 28 3-4-1反覆軸向作用力互制關係圖 31 3-4-2互制關係圖之應用方法 36 第四章 數值模型建立 40 4-1 有限元素軟體ABAQUS 40 4-2 樁土系統模型建立 40 4-2-1參數設定 41 4-2-2數值模型邊界條件與網格分布 43 4-2-3樁土介面設定 44 4-2-4分析流程 44 4-3 靜態承載力修正方法 45 4-3-1方法A土壤體積膨脹 46 4-3-2方法B側向土壓係數增加 48 4-3-3方法C鋼管樁壁膨脹 49 4-3-4打樁效應模擬結果 51 4-4 反覆拉拔力之分析 52 4-4-1體積應變衰減模型(VSDM) 52 4-4-2基樁受反覆拉力下行為(考量打樁效應) 52 4-4-3反覆拉力對基樁承載力之影響 54 4-4-4反覆拉力對樁身位移比之影響 55 第五章 參數分析 57 5-1 樁基礎受靜態拉力下之行為分析 57 5-1-1樁長對淨拉拔力之影響 59 5-1-2樁徑對淨拉拔力之影響 61 5-2 樁基礎受反覆拉力下之拉拔力 63 5-2-1反覆拉力振幅比對反覆拉拔力衰減現象之影響 63 5-2-2平均反覆拉力比對反覆拉拔力衰減現象之影響 66 第六章 結論與建議 69 6-1 結論 69 6-2 建議 70 參考文獻 71

    1. Abdel-Rahman, K., Achmus, M. (2011): "Behavior of Foundation Piles for Offshore Wind Energy Plants under Axial Cyclic Loading", Simulia Customer Conference, Barcelona/Spain, May 16-19, 2011.
    2. API (2007). “Errata and Supplement 3 - API Recommended Practice 2A-WSD,”Recommended Practice for Planning, Designing, Constructing Fixed Offshore Platforms - Working Stress Design.
    3. Atkins Consultants Ltd. (2000). “Cyclic degradation of offshore piles,” HSE Offshore Technology Report OTO 2000 013. Health and Safety Executive, London.
    4. Augustesen, A., Andersen, L. and Sørensen, C.S. (2005), “Time function for driven piles in clay,” Department of Civil Engineering, Aalborg University, Denmark, Internal report.
    5. BSH (2007). Bundesamt Für Seeschifffahrt Und Hydrographie “Baugrunderkundung Für Offshore-Windenergieparks.”
    6. Chen C.S., Liew S.S., Tan Y.C. (1999). “Time effects on the bearing capacity on driven pile,” 11th Asian Regional Conference on Soil Mechanics & Geotechnical Eng, Balkema, Rotterdam.
    7. Chow, F.C., Jardine, R.J., Brucy, F. & Nauroy, J.F. (1998). “Effects of time on capacity of pipe piles in dense marine sand,” Journal of Geotechnical and Geoenviromental Engineering, ASCE, 124(3), pp. 254-264.
    8. Clausen, C.J.F., Aas, P.M. and Karslud. K. (2005). “Bearing capacity of driven piles in sand, the NGI approach,”. Proceedings of the 1st International Symposium on Frontiers in Offshore Engineering, Perth, pp. 677–681.
    9. Det Norske Veritas (DNV). (2014). “Design of Offshore Wind Turbine Structures.” Offshore standard DNV-OS-J101, Det Norske Veritas, Norway.
    10. EAP(2012). Empfehlungen des Arbeitskreises „Pfähle“ (EA-Pfähle). Verlag Ernst & Sohn, 2. Auflage.
    11. Heerema, E. P. (1978). “Predicting pile driveability: heather as an illustration of the friction fatigue theory,” European Offshore Petroleum Conference and Exhibition, London, Vol. 1, pp.413-422.
    12. Jamiolkowski, M., Ghionna, V.N., Lancellotta, R. and Pasqualini, E. (1988). “New Correlations of Penetration Tests for Design Practice,” in De Ruiter, J. (Ed.), Penetration Testing 1988: Proceedings First Intl. Symp. on Penetration Testing, ISOPT-1, Orlando, 20-24 March 1988, Vol. 1, A.A. Balkema, Rotterdam, pp. 263-296.
    13. Jamiolkowski, M.B., Lo Presti, D.C.F., Manassero, M. (2003). “Evaluation of Relative Density and Shear Strength of Sands from CPT and DMT,” Soil Behavior and Soft Ground Construction, ASCE, GSP No. 119, 201-238. 14.
    14. Jardine RJ, Standing JR. (2012). “Field axial cyclic loading experiments on piles driven in sand,” SOILS AND FOUNDATIONS, Vol, 52, Pages: 723-736.
    15. Jardine, R.J, Chow FC, Overy RF, Standing JR.(2005). “ICP design methods for driven piles in sands and clays”, Thomas Telford, London, UK.
    16. Jardine, R.J., Standing, J.R. (2000). “Pile Load Testing Performed for HSE,” Cyclic Loading Study at Dunkirk, Volume 1und 2.In: Offshore Technology Report, HSE Health & Safety Executive.
    17. Kirsch, F., Richter, T. & Mittag, J. (2011). “Zur Verwendung von Interaktionsdiagrammen beim Nachweis axial-zyklisch belasteter Pfähle,” Bautechnik 88, Heft 5.
    18. Kirsch, F., Richter, T., and Mittag, J. (2011). “On the use of interaction diagrams for the design of axially cyclic loaded piles.” Bautechnik, 88(5), pp.319-324.Kolk, H.J., Shaffei, K.A. and Baajens, A.E. (2005). “Axial load tests on pipe piles in very dense sands at Ras Tanajib”, Proceedings of the 1st International Symposium on Frontiers in Offshore Geotechnics, Perth, pp. 765–770.
    20. Lehane BM, Jardine RJ, Bond AJ, Frank R (1993). ”Mechanisms of shaft friction in sand from instrumented pile tests,” ASCE Journal of Geotechnical Engineering Vol. 119,No.1, pp. 19–35.
    21. Lehane, B.M., Schneider, J.A. and Xu, X. (2005). “The UWA-05 method for prediction of axial capacity of driven piles in sand,” Proceedings of the 1st International Symposium on Frontiers in Offshore Geotechnics, Perth, pp. 683–689.
    22. Meyerhof, G.G. (1965). “Shallow foundations,” Journal of the Soil Mechanics and Foundations Division, ASCE,91(2), pp.21-31.Mitta & Richter (2005) “Beitrag zur Bemessung von vertikal zyklisch belasteten pfählen,” In: Festschrift zum 60. Geburtstag von Prof. Dr.-Ing.Hans-Georg Kempfert, Heft 18 der Schriftenreihe Geotechnik, Universität Kassel,pp. 337-354.
    24. Poulos, H. G. (1988). ”Cyclic Stability Diagram for axially loaded piles,” ASCE Journal of Geotechnical Engineering, Vol. 114, No. 8.
    25. Poulos, H. G., Hull, T. S. (1989). “The role of analytical geomechanics in foundation engineering,”.Current Principles and Practices, ASCE, Volume 2, pp. 1578-1606.
    26. Randolph M. F.(2003). ”Science and empiricism in pile foundation design,” Géotechnique, Vol. 53, No. 10, pp. 847-875.
    27. Schwarz, P. (2002). “Beitrag zum Tragverhalten von Verpresspfählen mit kleinem Durchmesser unter axialer zyklischer Belastung,” Schriftenreihe Lehrstuhl für Grundbau,Bodenmechanik und Felsmechanik, TU München, Heft 33, 2002.
    28. Silver, L., B. Seed (1971). “Volume Changes in Sands during Cyclic Loading”. In: Proceedings ofthe American Society of Civil Engineers, Vol. 97, No. SM9,pp. 1171-1182.White, D. J. (2005). “A general framework for shaft resistance on displacement piles in sand,” Frontiers in Offshore Geotechnics, Taylor & Francis.
    30. 郭玉樹(2012),「能源國家型科技計畫離岸風力主軸專案計畫-先導型離岸風電場風機結構與海下基礎」結案報告。
    31. 郭玉樹(2016),世曦工程公司內部演講投影片。
    32. 郭玉樹、M. Achmus、曾玉修、鍾智印、K. Abdel-Rahman(2015),「互制關係圖應用於離岸風機套管基礎受反覆軸向拉力下之穩定性分析」第37屆海洋工程研討會論文集,台中。
    33. 黃迪瑩,(2014),「無凝聚性土壤中樁基礎受反覆拉力下之行為研究」,水利及海洋工程系,國立成功大學碩士論文,台南。

    無法下載圖示 校內:2021-06-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE