簡易檢索 / 詳目顯示

研究生: 吳昆潮
Wu, Kun-Chao
論文名稱: 慢性病患對數位醫療照護服務之科技接受度
The Technology Acceptance of Telemedicine by Chronic Patients
指導教授: 吳學良
Wu, Hsueh-Liang
學位類別: 碩士
Master
系所名稱: 管理學院 - 企業管理學系
Department of Business Administration
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 68
中文關鍵詞: 個人屬性數位醫療照護科技接受度
外文關鍵詞: Technology Acceptance, Telemedicine, Personal Characteristics
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 醫療照護技術的進步,使得國民的平均壽命持續延長,再加上第二次世界大戰後龐大嬰兒潮族群陸續步入老年期,使得全球高齡人口持續增加。這也代表著未來的社會結構將有非常高的比例是醫療照護服務的高度需求者,對醫療保健的需求也勢必會大幅增加,如此高齡化的社會結構也將使傳統的醫療體系更顯得捉襟見拙,這對目前的健保體系及社會福利都會是非常嚴峻的挑戰。
    數位醫療照護服務則是在此情況之下演變而來的產物,在面臨人口老化對傳統醫療結構的威脅,以及資訊網路技術可克服的情境下,目前有許多歐美先進國家,皆已開始注重人口老化之議題,並已經實際地區性的實施數位醫療照護服務計劃,而此創新醫療照護模式也將是未來醫療產業的趨勢。
    本研究目的為探討台灣慢性病患對數位醫療照護服務之科技接受度,探討的變數包括效能認知、科技熟悉度、重視自我健康程度,另外加入個人屬性之調和變數,包括性別、年齡、教育程度、居住區域及經濟狀況,探討此五個調和變數對整體模型及變數間之影響。
    本研究以國立成功大學附設醫院及台南市立醫院之心血管疾病、氣喘及糖尿病三種慢性疾病患者為訪談對象,共計訪談409位病患,回收問卷409份,無效問卷4份,有效問卷405份,整體的有率回收率為99.02%。
    研究結果發現,效能認知的確會對接受意願產生影響;而科技熟悉度及重視自我健康程度也會對效能認知產生影響;但是科技熟悉度及重視自我健康程度與接受意願之間的關係,只會科技熟悉度會對接受意願產生影響,重視自我健康程度對接受意願並無顯著影響。

    With the advance of medicine technologies and the baby booms after World War Two, the average age of global populations increases gradually. It means that there will have highly demand for medical services, and the traditional medical system will not afford to handle such problem.
    Telemedicine is the product under copying with aging problem. Under facing the threat to traditional medical system and the feasible of technology, many western countries have started paying much attention to global aging issue and implemented some telemedicine services in certain areas. In the future, Telemedicine will be the trend in medical industry.
    The main purpose of this study is to discuss the technology acceptance of telemedicine by chronic patients in Taiwan. The discussing variables included perceived usefulness, technology savvy and awareness. In addition, we tested the moderator effects of personal characteristics, including sex, age, education, proximity and economic condition.
    The study population included the chronic patients of Cardiology, Diabetes and Asthma in National Cheng Kung University Hospital and Tainan Municipal Hospital. All total of 409 patients were interviewed and returned 409 questionnaires. Of the returned questionnaires, 4 were incomplete and the remaining 405, valid and complete, were used for quantitative analysis. The useable response rate was 99.02%.
    The major findings of this study indicated that perceived usefulness have significant effect with behavior intention; technology savvy and awareness also have significant effects with perceived usefulness. As to the relationship of between technology savvy and awareness with behavior intention, the results showed that technology savvy have significant effect with behavior intention, but awareness have no significant effect with behavior intention.

    目 錄 第一章 緒論.............................................................1 第一節 研究背景與動機...............................................1 第二節 研究目的.....................................................2 第三節 研究流程.....................................................3 第四節 論文結構.....................................................5 第二章 文獻探討.........................................................7 第一節 數位醫療照護服務.............................................7 第二節 科技接受度..................................................11 第三節 假設建立....................................................15 第四節 個人屬性之調和效果..........................................18 第三章 研究設計與研究方法..............................................20 第一節 研究架構....................................................21 第二節 研究假設....................................................22 第三節 變數的定義與衡量............................................22 第四節 研究對象與資料蒐集..........................................24 第五節 問卷回收與樣本結構..........................................27 第六節 資料分析方法................................................30 第四章 實證結果與分析..................................................32 第一節 因素分析及信度檢定..........................................32 第二節 線性結構模式分析............................................36 第五章 結論與建議......................................................54 第一節 研究結論....................................................54 第二節 研究貢獻....................................................57 第三節 研究限制與建議..............................................58 參考文獻...............................................................59 附錄...................................................................66 表目錄 表2-1 數位醫療照護之風險管理範疇........................................9 表2-2 TAM相關研究構面.................................................14 表3-1 科技熟悉度之衡量構面.............................................23 表3-2 重視自我健康程度之衡量構面.......................................23 表3-3 效能認知之衡量構面...............................................24 表3-4 接受意願之衡量構面...............................................24 表3-5 受訪醫護人員名單.................................................25 表3-6 問卷回收狀況.....................................................27 表3-7 樣本基本特性.....................................................29 表4-1 科技熟悉度之因素分析.............................................33 表4-2 重視自我健康程度之因素分析.......................................33 表4-3 效能認知之因素分析...............................................34 表4-4 科技熟悉度之內部一致性分析結果...................................35 表4-5 重視自我健康程度之內部一致性分析結果.............................35 表4-6 效能認知之內部一致性分析結果.....................................36 表4-7 整體模式結構參數之係數及適配度指數...............................38 表4-8 分羣比較性別結構參數之係數及適配度指數...........................40 表4-9 分羣比較年齡結構參數之係數及適配度指數...........................43 表4-10 分羣比較教育程度結構參數之係數及適配度指數......................46 表4-11 分羣比較居住區域結構參數之係數及適配度指數......................49 表4-12 分羣比較經濟狀況結構參數之係數及適配度指數......................52 表5-1 問卷分析之統計結果...............................................54 表5-2 調和變數效果.....................................................56 圖目錄 圖1-1 本論文之研究流程..................................................4 圖2-1 全球數位醫療照護服務市場..........................................8 圖2-2 遠距病人監測系統.... ............................................10 圖2-3 遠距病人監測系統五大要項.........................................11 圖2-4 TRA模型架構圖...................................................12 圖2-5 TAM模型架構圖...................................................13 圖3-1 本論文之研究架構.................................................21 圖3-2 民國九十二年 糖尿病、支氣管炎及氣喘與心臟血管疾病 三大疾病患者人數.................................................26 圖4-1 整體模式結構參數之係數...........................................39 圖4-2 男生組群各路徑之結構參數係數.....................................41 圖4-3 女生組群各路徑之結構參數係數.....................................41 圖4-4 65歲以下組群各路徑之結構參數係數................................44 圖4-5 65歲以上組群各路徑之結構參數係數................................44 圖4-6 高中以下組群各路徑之結構參數係數.................................47 圖4-7 高中以上組群各路徑之結構參數係數.................................47 圖4-8 台南市組群各路徑之結構參數係數...................................50 圖4-9 非台南市組群各路徑之結構參數係數.................................50 圖4-10小康以下組群各路徑之結構參數係數.................................53 圖4-11小康以上組群各路徑之結構參數係數.................................53

    1. Adams, D. A., Nelson, R. R., and Todd, P. A. (1992) “Perceived Usefulness,
    Ease of Use, and Usage of Information Technology: A Replication, MIS
    Quarterly, 16(2), pp. 227-248.
    2. Agarwal, R., and Prasad, J. (1998) “The Actecedents and Consequents of
    User Perceptions in Information Technology Adoption”, Decision Support
    Systems, 22, pp. 15-29.
    3. Ajzen, I. (1985) “From Intention to Actions: A Theory of Planned Behavior,
    In Kuhl , J.,& Beckmann, J (Eds.), Action control: From Cognition to
    Behavior, pp. 11-39.
    4. Ajzen, I. (1991) “The Theory of Planned Behavior”, Organizational
    Behavior and Human Decision Processes, Vol. 50, pp. 179-211.
    5. Bagozzi, R. P. (1981) “Attitudes, Intentions, and Behavior: A Test of Some
    Key Hypotheses”, Journal of Personality and Social Psychology, Vol. 41,
    pp. 607-627.
    6. Bagozzi, R. P., and Yi, Y. (1988) “On the Evaluation of Structural
    Equation Model”, Journal of Academy of Marketing Science, 16(1), pp. 74-94.
    7. Bergeron, F., Rivard, S., and DeSerre, L. (1990) “Investigating the
    Support Role of the Information Centre”, MIS Quarterly, Vol. 14, No. 1,
    pp. 247-260.
    8. Bettman, J. R., and Sujan, M. (1987) “Effects of Framing on Evaluations of
    Comparable and Non-Comparable Alternatives by Expert Novice Consumers”,
    Journal of Consumer Research, Vol. 14, pp. 141-154.
    9. Cain, M. M., Sarasohn-Kahn, J., and Wayne J. C. (2000) “Health e-People:
    The Online Consumer Experience”, California HealthCare Fundation.
    10. Chau, P. Y. K., and Hu, P. J. E. (2001) “Information Technology
    Acceptance by Individual Professionals: A Model Comparison Approach”,
    Decision Science, 32(4), pp. 699-719.
    11. Cragg, P. B., and King, M. (1993) “Small Firm Computing: Motivators and
    Inhibitors”, MIS Quarterly, Vol. 17, No. 1, pp. 47-60.
    12. Davis, F.D. (1986) “A Technology Acceptance Model for Empirically Testing
    New End-User Information Systems: Theory and Result”, Sloan School of
    Management, Massachusetts Institute of Technology, unpublished doctoral
    dissertation.
    13. Davis, F. D. (1989) “A Technology Acceptance Model for Empirically
    Testing New End-User Information Systems: Theory and Results, Doctoral
    Dissertation”, Sloan School of Management, Massachusetts Institute of
    Technology.
    14. Davis, F.D. (1989) “Perceived Usefulness, Perceived Ease of Use, and User
    Acceptance of Information Technology”, MIS Quarterly, pp. 318-340.
    15. Davis, F. D., Bagozzi R. P., and Warshaw P. R. (1989) “User Acceptance of
    Computer Technology: A Comparison of Two Theoretical Models”, Management
    Science, Vol. 35, No. 8, pp. 982-1003.
    16. Dean, K. (1992) “Health-Related Behavior: Concepts and Methods. In: Ory
    MG, Abeles RP, Lipman DP, eds”, Aging, Health, and Behavior, Newbury
    Park, Calif: Stage, pp. 27-56.
    17. Dishaw, M. T., and Strong, R. M. (1999) “Extending the Technology
    Acceptance Model with Task-Technology Tit Constructs”, Information of
    Management, 36, pp. 9-21.
    18. Dickerson, M. D., and Gentry, J. W. (1983), “Characteristics of Adopters
    and Non-Adopters of Home Computers”, Journal of Consumer Research, 10,
    pp. 225-235.
    19. Fazio, R. H., and Zanna, M. (1981) “Direct Experience and Attitude-
    Behavior Consistency”, in Berkowits, L.(Ed.), Advances in Experimental
    Social Psychology, Vol. 14, Academic Press, San Diego, CA, pp. 161-202.
    20. Fishbein, M., and Ajzen, I. (1975) “Belief Attitude, Intention and
    Behavior: An Introduction to Theory and Research”, Addsion-Wesley,
    reading, MA.
    21. Gatignon, H., and Robertson, T. S. (1991) “Innovative Decision
    Processes” In Handbook of Consumer Behavior. Eds. Thomas S. Robertson and
    Harold H. Kassarjian. Englewood Cliffs, NJ: Prentice Hall.
    22. Gefen, D., and Straub, D. W. (1997), “Gender Differences in the
    Perception and Use of E-Mail: An Extension to the Technology Acceptance
    Model”, MIS Quarterly, 21, 4, pp. 389-401.
    23. Gefen, D., and Straub, D. (2000) “The Relative Importance of Perceived
    Ease of Use in IS Adoption: A Study of E-Commerce Adoption”, Journal of
    Association for Information Systems, Vol.1, No. 8.
    24. Hair, J. F., Anderson, R. E., Tatham, R. L., and Black, W. C. (1988),
    Multivariate Data Analysis, Prentice Hall.
    25. Harvard Business School (HBS) Consulting (2003).
    26. Hawang, Y., and Yi M. Y. (2002) “Predicting the Use of Web-Base
    Information Systems: Intrinsic Motivation and Self-Efficacy”, Proceedings
    of 8th Americas Conference on Information Systems, pp. 1076-1081, New
    York: AMICS.
    27. Igbaria, M. (1992) “User Acceptance of Microcomputer Technology: An
    Empirical Test”, Omega, Vol. 21, No. 1, pp. 73-90.
    28. Igbaria, M., Guimaraes, T., and Davis, G. B. (1995) “Testing the
    Determinants of Microcomputer Usage via a Structural Equation Model”,
    Journal of Management Information Systems, Vol. 11, No. 4, pp. 87-114.
    29. Igbaria, M., Iivari, J., and Maragahh, H. (1995) “Why Do Individuals Use
    Computer Technology? A Finnish Case Study”, Information and Management,
    Vol. 21, pp. 227-238.
    30. Igbaria, M., Zinatelli, Cragg, P., and Cavaye, A.L.M (1997) “Personal
    Computing Acceptance Factors in Small Firms: A Structural Equation
    Model”, MIS Quarterly, Vol. 21, No. 3, pp. 279-305.
    31. Iscan, O. F., and Naktiyok, A. (2005) “Attitudes towards Telecommuting:
    The Turkish case”, Journal of Information Technology, 20, pp. 52-63.
    32. Institute for Prospective Technological Studies (IPTS) report (2003).
    33. Karahanna, E., and Straub, D.W. (1999) “The Psychological Origins of
    Perceived Usefulness and Ease-of-Use”, Information and Management,
    Vol. 35, No. 4, pp. 237-250.
    34. Labay, D. G., and Kinnear, T. C. (1981) “Exploring the Consumer Decision
    Process in the Adoption of Solar Energy Systems”, Journal of Consumer
    Research, 14, pp. 583-587.
    35. Lopez, D. A., and Manson D. P. (1997) “A Study of Individual Computer
    Self-Efficacy and Perceived Usefulness of the Empowered Desktop
    Information System”, Journal of Interdisciplinary Studies, pp. 83-92.
    36. Lu, H., and Lin, J. C. C. (2002) “Predicting Customer Behavior in the
    Market space: An Empirical Study of Rayport and Sviokla’s Framework”,
    Accepted, Information & Management, (SSCI)(NSC 90-2416-H-031-010).
    37. Malhotra, Y., and Galletta, D. F. (1999) “Extending the Technology
    Acceptance Model to Account for Social Influence: Theoretical Base and
    Empirical Validation”, Proceedings of the 32nd Hawaii International
    Conference on System Sciences. Hawaii: IEEE.
    38. Mathieson, K. (1991) “Predicting User Intentions: Comparing the
    Technology Acceptance Model with the Theory of Planned Behavior”,
    Information Systems Research, Vol. 2, No. 3, pp. 173-191
    39. Mattilia, M., Karjaluoto, H., and Pento, T. (2003) “Internet banking
    adoption among mature customers: early majority or laggards?”, Journal of
    Services Marketing, Vol. 17, No. 5, pp. 514-528.
    40. Mervis, C. B., and Rosch, E. (1981) “Categorization of Natural Objects”,
    Annual Review of Psychology, Vol. 32, pp. 89-115.
    41. Midgley, F. D., and Dowling, G. R. (1978) “Innovativeness: The Concept
    and Its Measurement”, Journal of Consumer Research, 4, pp. 229-242.
    42. Mirani, R., and King, W. R. (1994) “Impacts of End-User and Information
    Centre Characteristics on End-User Computer Support”, Journal of
    Management Information Systems, Vol. 11, No. 1, pp. 141-166.
    43. Moon, J. W., and Kim, Y. G. (2001) “Extending the Tam for a World-Wide-
    Web Context”, Information and Management, 38(4), pp. 217-230.
    44. Moore, G.C. (1989) “An Examination of the Implementation of Information
    Technology by End-Users: A Diffusion of Innovations Perspective”,
    Dissertation, University of British Columbia.
    45. Morris, M. G., and Venkatesh, V. (2000) “Age Difference in Technology
    Acceptance Decisions: Implications for a Changing Work Force”, Personal
    Psychology, 53, 2, pp. 375-403.
    46. Ndubisi, N. O. and Jantan M. (2003) “Evaluating IS Usage in Malaysian
    Small and Medium-Sized Firms Using the Technology Acceptance Model”,
    Logistics Information Management, Vol. 16, No. 6, pp. 440-450.
    47. Oustlund, L. E. (1974) “Perceived Innovation Attributes as Predictors of
    Innovativeness”, Journal of Consumer Research, 1, pp. 23-29.
    48. Pepermans, R., Verleye, G., and Cappellen, S. V. (1996), “
    ‘Wallbanking’, Innovativeness and Computer Attitudes: 25-40-year-old ATM-
    Users on the Spot”, Journal of Economic Psychology, 17, pp. 731-748.
    49. Rogers, E. M. (1995) “Diffusion of Innovation”, 4th ed., The Free Press,
    New York, NY.
    50. Roymond, L., and Bergeron, F. (1992) “Planning of Information Systems to
    Gain a Competitive Edge”, Journal of Small Business Management, Vol. 30,
    No. 1, pp. 21-26.
    51. Slyke, C. V., Comunalu, C. L., and Belanger F. (2002) “Gender Difference
    in Perceptions of Web-Based Shopping”, Communication of the ACM, Vol. 45,
    No. 7, pp. 82-86.
    52. Smith, R. E., and Swinyard, W. R. (1983) “Attitude-Behavior Consistency:
    The Impact of Product Trial versus Advertising”, Journal of Marketing
    Research, Vol. 20, pp. 257-267.
    53. Sorce, P., Perotti, V., and Widrick, S. (2005) “Attitude and Age
    Differences in Online Buying”, International Journal of Retail &
    Distribution Management, 33, 2/3, pp. 122-132.
    54. Steenkamp, Jan-Benedict E. M., Frenkel ter Hofstede, and Michael Wedel
    (1999) “A Cross-National Investigation into the Individual and National
    Cultural Antecedents of Consumer Innovativeness”, Journal of Marketing,
    63, pp. 55-69.
    55. Subramanian, G. H. (1994) “A Replication of Perceived Usefulness and
    Perceived Ease of Use Measurement”, Decision Sciences, Vol. 25,
    pp. 863-874.
    56. Summers, J. O. (1971) “Generalized Change Agents and Innovativeness”,
    Journal of Marketing Research, 8, pp. 313-316.
    57. Szajna. B. (1996) “Empirical Evaluation of the Revised Technology
    Acceptance Model”, Management Science, Vol. 42, No. 1, pp. 85-92.
    58. Taylor, S., and Todd, P. (1995) “Assessing IT Usage: The Role of Prior
    Experience”, MIS Quarterly, pp. 561-570.
    59. Venkatesh, V., and Davis, F. D. (2000) “A Theoretical Extension of the
    Technology Acceptance Model: Four Longitudinal Field Studies”, Management
    Science, No. 2, Feb., pp. 186-204
    60. Venkatraman, M. P. (1991) “The Impact of Innovativeness and Innovation
    Type on Adoption”, Journal of Retailing, 67 (1), pp. 51-67.
    61. Wang, S. N. (2003) “Consumers’ Acceptance of Web Marketing Facilities in
    Marco-Special Economic Zone of Macao”, the Proceeding of 7th
    International Conference on Global Business and Economic Development,
    pp. 974-980, Bangkok: Montclair State University.
    62. Yoon, C. (1997) “Age Differences in Consumers’ Processing Strategies: An
    Investigating of Moderating Influences”, Journal of Consumer Research,
    24, 3, pp. 329-342.

    中文部份
    1. 工業技術研究院,IEK-ITIS計畫(2005/5)。
    2. 行政院衛生署,http://www.doh.gov.tw/cht/index.aspx。

    無法下載圖示 校內:2106-07-05公開
    校外:2106-07-05公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE