簡易檢索 / 詳目顯示

研究生: 林彥廷
Lin, Yan-ting
論文名稱: 含不可凝結氣體之管外強迫/自然對流膜狀凝結熱傳之特性研究
Forced/Natural Convection Film Condensation in the Presence of Non-Condensable Gases on the Horizontal Cylinder
指導教授: 陳朝光
Chen, Cha’o-Kuang
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 154
中文關鍵詞: 膜狀凝結波形表面橢圓超級橢圓水平圓管自然對流強迫對流
外文關鍵詞: Natural Convection, Wavy Surface, Film Condensation, Horizontal Tube, Super Ellipse, Ellipse, Forced Convection
相關次數: 點閱:127下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文應用數值模擬方法探討管外不同幾何外型構造之凝結熱傳特性之分析。本研究熱傳裝置包括了水平圓管、波形圓管、橢圓管與超級橢圓管。本研究探討蒸汽流場中含有不可凝結氣體,且建模過程採用兩相流數值方法預測蒸汽中汽液界面剪力,蒸汽濃度分佈與溫度分佈。研究結果歸納出系統溫差、蒸汽流速、蒸汽濃度為影響冷凝管熱傳係數與液膜厚度之相關重要參數。根據研究結果顯示,不可凝結氣體的參雜會造成凝結液膜厚度、局部與平均熱通量顯著的下降;系統溫差的提升會增厚凝結液膜厚度與提高局部熱通量;蒸汽流速增加會提升局部熱通量並造成冷凝液膜變薄。此外,本研究亦探討管壁幾何變化對凝結熱傳的影響。研究中歸納出等表面積之水平橢圓管,因受到外部蒸汽勢流的影響,平均熱傳隨著橢圓離心率增加而下降,反之,高橢圓離心率的情況下,可減輕蒸汽濃度對平均熱傳的影響。本研究針對具波形表面的水平圓管方面,發現於降低波形振幅與增加波形數量時,提高系統溫差可使波形圓管之熱傳率高於光滑圓管。因此粗糙表面與高系統溫差可有效提升熱傳係數。而在超級橢圓管之自然對流凝結熱傳方面,在無表面張力的作用下平均熱傳隨著高橢圓次方參數n值大於1.3後而逐漸下降,且橢圓離心率的增加對平均熱傳具增強之作用。因此,在高橢圓次方參數n可加強橢圓離心率對平均熱傳的影響。

    In this research, the film condensation heat transfer on various shapes and geometries of the cylinders has been investigated by the numerical simulation method. The heat transfer devices in this research include the horizontal circular tubes, the wavy surfaces of the circular tubes, the elliptical tubes, and the super elliptical tubes. Due to the fact that the non-condensable gases are infiltrated in the vapor flow, the two-phase numerical modeling are utilized for estimating the vapor-liquid interfacial shear stresses, the vapor concentrations, and the vapor temperatures. The results revealed that the system temperature difference, the vapor velocity, and the vapor concentration played an important role on the condensate film thickness and the local/average heat transfer. The infiltrates of the non-condensable gases will decrease the film thickness and the local/average heat flux. The system temperature difference is directly proportional to the film thickness and heat flux. Otherwise, the vapor velocity is directly proportional to the heat flux, but inversely proportional to the film thickness. Furthermore, for the dependence of the condensate heat transfer on various shapes and geometries of the cylinders, the results induced that the horizontal elliptical tubes based on the constant surface will decline the heat transfer with an increasing ellipticity under the influence of the uniform vapor flow. However, the increasing ellipticity reduces the effect of vapor concentration on the heat transfer. For the wavy surface of the circular tube, the heat transfer caused by the low wavy amplitude and an increasing wavy number parameter is larger than that of the smooth tube under on the high system temperature difference. This phenomenon reveals that the rough surface with low tube temperature increases the heat transfer efficiently. For the natural convection film condensation on the super-elliptical tube without surface tension, the average heat transfer gradually decreases as n greater than 1.3, and the increasing ellipticity enhances the average heat transfer. Thus, it was found that the ellipticity will affect the heat flux with an increasing order of super-ellipse parameter.

    摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 X 表目錄 XIV 符號說明 XV 第一章 緒論 1 1-1. 前言 1 1-2. 膜狀凝結文獻回顧 3 1-3. 研究動機 11 1-4. 論文結構 13 第二章:凝結熱傳之理論介紹 17 2-1. 前言 17 2-2. 凝結現象的理論分類 17 2-3. 凝結熱傳遞增強方法及其影響要因 18 2-4. 含不可凝結氣體之凝結現象物理分析 21 2-5. 混合物的性質定義 23 2-6. 濃度邊界條件 24 2-7. 蒸氣-氣體混合汽體之飽和溫度與壓力關係 26 第三章:膜狀凝結熱傳數值方法 32 3-1. 前言 32 3-2. 通用守恆方程式(General Conservation Equation) 33 3-3. 邊界條件的處裡 39 3-4. 代數方程式解法 39 3-5. 收斂準則 40 第四章:含不可凝結氣體之圓管外膜狀凝結熱傳 43 4-1. 前言 43 4-2. 控制方程式之建立 43 4-3. 紊流模式的建立 47 4-4. 座標轉換 48 4-5. 數值解題流程方法 49 4-6. 結果與討論 51 4-6-1. 局部凝結液厚度分析。 51 4-6-2. 局部熱通量分析。 53 4-6-3. 數值結果與文獻比較。 55 第五章:含不可凝結氣體之橢圓管外膜狀凝結熱傳 66 5-1. 前言 66 5-2. 控制方程式的建立 66 5-3. 凝結液膜厚度與熱傳係數的定義 71 5-4. 數值方法 72 5-5. 結果與討論 72 5-5-1. 局部凝結液厚度分析。 72 5-5-2. 局部熱通量分析。 74 5-5-4. 理論文獻與實驗文獻之平均無因次化熱傳分析比較。 76 第六章:含不可凝結氣體之波形圓管外膜狀凝結熱傳 84 6-1. 前言 84 6-2. 控制方程式的建立 85 6-3. 數值解法 89 6-4. 結果與討論 90 6-4-1. 局部凝結液厚度分析。 90 6-4-2. 局部熱通量分析。 92 6-4-3. 平均熱通量分析 94 第七章:超級橢圓管外膜狀凝結熱傳 102 7-1. 前言 102 7-2. 超級橢圓曲線座標系 103 7-3. 超級橢圓表面張力之建立 105 7-4. 物理模式與理論分析 106 7-5. 結果與討論 113 7-5-1. 局部凝結液厚度分佈。 113 7-5-2. 局部無因次化熱傳係數分佈。 117 7-5-3. 平均無因次化熱傳係數分佈。 119 第八章:結論與展望 134 8-1. 含不可凝結氣體之圓管外強迫對流膜狀凝結熱傳 134 8-2. 含不可凝結氣體之橢圓管外強迫對流膜狀凝結熱傳 135 8-3. 含不可凝結氣體之波形圓管外強迫對流膜狀凝結熱傳 135 8-4. 超級橢圓管外自然對流膜狀凝結熱傳 136 8-5. 未來研究方向與建議 137 參考文獻 139 附錄 151 個人簡歷 152

    Ali A. P. M., and McDonald T. W., Laminar film condensation on horizontal elliptical cylinders: A first approximation for condensation on inclined tubes, ASHRAE Trans, 83 (2), pp. 242-249, 1977.
    Asbik M. and Hadda D. O., Forced convection laminar film condensation of downward flowing vapor on a single horizontal elliptic cylinder or a bank of elliptical tubes." Numerical Heat Transfer Part a-Applications 37(5), pp. 511-544, 2000.
    Beatty K.O. and Katz D.L., Condensation of Vapors on Outside of Finned Tubes, Chem. Eng. Prog., 44, No.1, pp.55–70, 1948.
    Baer E. and McKelvey J. M., Heat transfer in film condensation, A. I. Ch. E. J., June No.2, Vol. 4, pp.218-222,1958.
    Bromley L.A., Humphreys R.F. and Murray W. Journal Heat Heat Transfer Vol.88 P.80, 1966.
    Bolton, D., The computation of equivalent potential temperature, Monthly Weather Review, 108, pp.1046-1053, 1980.
    Barr, A., Superquadrics and angle-preserving transformations, IEEE Comput. Graphics App1, pp. 11-23, 1981.
    Bannwart A. C. and Bontemps A., Condensation of a vapour with incondensables: an improved gas phase film model accounting for the effect of mass transfer on film thickness, Int. J. Heat Mass Transfer, Vol. 33, pp.1465-1473, 1990.
    Cess, R. D., Laminar-Film Condensation on a Flat Plate in the Absence of a Body Force, Z. Angew. Math. Phys., 11, pp. 426–433, 1960.
    Chen, M. M., An analytical study of laminar film condensation: part 2- single and multiple horizontal tubes, J. of Heat Transfers, pp.55-60, 1961.
    Chen, M. M., An analytical study of laminar film condensation: part 1 –flat plates, J. of Heat Transfer 83, pp.48-54, 1961.
    Choi H.Y., Electrostatic Effect of Condensing in a Vertical Tube, Tufts Univ. Dept. of Mechanical Engineering Report 64-1, 1964.
    Cheng, S. and Tao, J., Study of condensation heat transfer for elliptical pipes in stationary saturated vapor, ASME, Proceedings of the 1988 National Heat Transfer Conference 2, pp. 405-408, 1988.
    Chiou, J. S., Yang S. A. and Chen, C. K., Laminar-Film Condensation inside a Horizontal Elliptic Tube, Applied Mathematical Modelling 18(6): pp.340-346, 1994.
    Copati J. A. and Krishna R., Influence of non-condensables on the condensation of vapour mixtures forming immiscible liquids, Int. Comm. Heat Mass Transfer, Vol. 27, pp. 425-434, 2000.
    Chen, C. K. and Hu, H. P., Turbulent film condensation on a half oval body, Int. J. of Heat and Mass Transfer, Vol.46, pp.4271-4277, 2003.
    Chen, C. K. and Hu, H. P., Turbulent film condensation on a horizontal elliptical tube, ASME Journal of Heat Transfer, Vol.125, pp. 1194-1197, 2003.
    Denny, V. E. and Mills, A. F., Nonsimilar solutions for laminar film condensation on a vertical surface, Int. Heat Mass Transfer 12, pp.965-979, 1969.
    Denny, V. E. and Mills, A. F., Laminar film condensation of a flowing vapor on a horizontal cylinder at normal gravity, Trans. ASME, Vol.91, pp.495, 1969.
    Dhir V. K. and Lienhard J. H., Laminar film condensation on plane and axisymmetric bodies in non-uniform gravity, J. Heat Transfer, 93C, pp. 97~100, 1971.
    Fujii T. and Uehara H., Laminar film condensation on a vertical surface, Int. J. Heat Mass Transfer, Vol.15, pp.217-233, 1972.
    Dhir V. K. and Lienhard J. H., Laminar film condensation on submerged isothermal bodies, J. Heat Transfer, pp.555-557, 1974.
    Fujii T., Honda H., and Oda K., Condensation of Steam on a Horizontal Tube-the influences of Oncoming Velocity and thermal conditions and Thermal condition at the tube wall, Condensation Heat Transfer, ASME, New York, pp. 35-43, 1979.
    Goff J. A., and Gratch S., Low-pressure properties of water from -160 to 212 F, in Transactions of the American society of heating and ventilating engineers, pp 95-122, presented at the 52nd annual meeting of the American society of heating and ventilating engineers, New York, 1946.
    Gardiner M., The superelliipse: a curve that lies between the ellipse and the rectangle, Sci. Am 21, pp. 222-234, 1965.
    Gaddis F. S., Solution of the two-phase boundary equation for laminar condensation of vapor flowing perpendicular to a horizontal cylinder, Int.J. Heat Mass Transf., 22, pp.371, 1979.
    Honda, H., Nozu, S., Uchima, B. and Fujii, T., Effect of Vapor Velocity on Film Condensation of R-113 on Horizontal Tubes in a Crossflow, Int. J. Heat Mass Transfer, Vol.29, pp.429-438, 1986.
    Grant S. E., Modified Heat Transfer Coefficient In The Presence On Non-Condensable Gas for RELAP/MOD2 Computer Code. MS Thesis, A &M University, Texas, 1990.
    Hsu P. T., Yang Y. T., and Chen C. K., Laminar Film Condensation on a Finite-Size Horizontal Wavy Plate, Int. Communications in Heat and Mass Transfer, Vol. 24, No. 8, pp.1141-1152, 1997.
    Homescu D., Panday P. K., Forced convection condensation on a horizontal tube: Influence of turbulence in the vapor and liquid phases, J. Heat Transfer-Trans. ASME, 121 (4) pp.874-885, NOV, 1999.
    Herrmann Schlichting, Klaus Gersten, E. Krause, H. Jr. Oertel, C. Mayes, Boundary-Layer Theory, 8th edition Springer, 2004.
    Hu H. P. and Chen C. K., Effects of eddy diffusivity in film condensation on a horizontal tube, International Communications in Heat and Mass Transfer 34(1) pp.52-61, 2007.
    Koh J. C. Y., On Integral Treatment of Two Phase Boundary Layer in Film Condensation, J. Heat Transfer 83, pp. 359-362, 1961.
    Koh J. C. Y., Sparrow E. M. and Hartnett J. P., The two phase boundary layer in laminar film condensation, Int. J. Heat Mass Transfer pp.69-82, 1961.
    Kato H., Nishiwaki N. and Hirata M., On the Turbulent Heat Transfer by Free Convection from a Vertical Plate, Int. J. Heat Mass Transfer, Vol.11, pp.1117-1125, 1967.
    Karimi A., Laminar film condensation on helical reflux condensers and related configurations, Int. J. Heat and Mass Transfer 20, pp.1137-1144, 1977.
    Leppert G. and Nimmo B., Laminar film condensation on surfaces normal to body or inertial forces, Trans. ASME. J. Heat Transfer, Vol. 80 , pp.178-179, 1968.
    Leonard b. p., a stable and accurate convective modeling procedure based on quadratic upstream interpolation, comput. Meth. Appl. Mech. Eng., 29, pp.59-98. ,1979
    Lee W. C., Filmwise Condensation on a Horizontal Tube in Presence of Forced Convection and Non-condensing Gas, PhD Thesis, Queen Mary College, University of London, United Kingdom, 1982.
    Lee W. C. and Rose J. W., Forced-Convection Film Condensation on a Horizontal Tube with and without non-Condensing Gases, International Journal of Heat and Mass Transfer, 27, pp.519-528, 1984.
    Li T. Y. and Hsu P. T., Laminar Film Condensation on a Finite-Sized Horizontal Wavy Disk with Suction at the Wall, Chem. Eng. Comm., 177, pp.87-104 ,2000.
    Lin, Y. T. and Yang S. A., Turbulent film condensation on a horizontal elliptical tube, Heat and Mass Transfer/Waerme- und Stoffuebertragung, v 41, n 6, pp. 495-502, 2005.
    Lin Y. T. and Yang S. A., Turbulent film condensation on a nonisothermal horizontal tube, Journal of Mechanics, v 21, n 4, pp. 235-242, 2005.
    Mandelzweing S. I., The effect of vertically downward velocity on the heat transfer from a steam-Nitrogen Mixture Condensing on a Horizontal Cylinder, MSc Thesis, Queen Mary College, University of London, United Kingdom, 1960.
    Minkowycz W. J. and Sparrow E.M., Condensation heat transfer in the presence of noncondensables, interfacial resistance, superheating, variable properties, and diffusion, Int. J. Heat Mass Transfer 9, pp.1125–1144, 1966.
    Murray, F. W., On the computation of saturation vapor pressure, J. Appl. Meteorol., 6, pp.203-204, 1967
    Michael A. G., Rose J. W., and Daniels L. C., Forced Convection Condensation on a Horizontal Tube Experiments with Vertical Downflow of Steam, ASME Journal of Heat Transfer, vol. 111. pp. 792-797, 1989.
    Memory S. B. and Rose J. W., Free convection laminar film condensation on a horizontal tube with variable wall temperature, Int. J. Heat Mass Transfer, Vol.34, pp.2775-2778, 1991.
    Memory S. B., Adams V. H., and Marto P. J., Free and forced convection laminar film condensation on horizontal elliptical tubes, Int. J. Heat Mass Transfer, Vol. 40, pp.3395-3406, 1997.
    Mosaad M., Combined free and forced convection laminar film condensation on an inclined circular tube with isothermal surface, Int. J. Heat Mass Transfer, Vol. 42, pp.4017-4025, 1999.
    Martin V. J. M., Jimenez M. A., Martin F. F., Benitez J.A.F.,Comparison of film condensation models in presence of non-condensable gases implemented in a CFD code, HEAT AND MASS TRANSFER, 41, pp. 961, 2005.
    Mukhopadhyay S. and Som S. K., Chakraborty S. A., generalized mathematical description for comparative assessment of various horizontal polar tube geometries with regard to external film condensation in presence of non-condensable gases, International Journal of Heat And Mass Transfer, 50 (17-18), pp.3437-3446, 2007.
    Murase T. and Wang H. S., Marangoni condensation of steam-ethanol mixtures on a horizontal tube, International Journal of Heat and Mass Transfer 50(19-20), pp.3774-3779, 2007.
    Nusselt W., Die Oberflachenkondensation der Wasserdampfes, Zeitschrift Vereines deutscher ingenieure, Vol. 60, pp.541-546, pp.569-575, 1916.
    Nobbs D. W., the effect of downward vapor velocity and inundation on the condensation rates on horizontal tubes and tube banks, PhD Thesis, University of Bristol, United Kingdom, 1975.
    Othmer D. F., The condensation of steam, Industrial and Engineering Chemistry, Vol. 21, pp.577-583, 1929.
    Popov V. D., Heat transfer during vapor condensation on a horizontal surface, Trudykiev. Teknol. Inst. Pishch, Prom., Vol. 11, pp.87-97, 1951.
    Pletcher, R. H., Prediction of Transpired Turbulent Boundary Layers, ASME J. Heat Mass Transfer, pp.89-94, 1974.
    Patankar S. V., numerical heat transfer and fluid flow, New York, McGraw-Hill. 1980.
    Panday P. K., Laminar-film condensation of downward flowing vapor on a horizontal elliptic cylinder - a numerical-solution., Int. Commun. Heat Mass, 14, pp.33-43, 1987.
    Panday, P. K., Laminar-Film Condensation of Downward Flowing Vapor on a Horizontal Elliptic Cylinder - a Numerical-Solution. International Communications in Heat and Mass Transfer 14(1), pp.33-43, 1987.
    Pentalnd A., Automatic extraction of deformable part models, Int. J. Comput. Vision 4 (2), pp.107-126, 1990.
    Panday P. K. and Homescu D., Forced Convection Condensation on a Horizontal Tube:Influence of Turbulence in the Vapor and Liquid Phases, Transactions of the ASME, Vol.121, pp.874-885, 1999.
    Rohsenow W. M., Heat transfer and temperature distribution in Laminar-film condensation, Trans. ASME, Vol.78, pp.13-18, 1956.
    Rohsenow W. M., Heat transfer and temperature distribution inlaminar filmcondensation, Trans ASME 78, pp. 1645-1648, 1956.
    Raben I.A. Commerford G. and Directent R. U.S. Dept. of Int. O.S.W.R. & D Prog. Report No.49, 1961.
    Reid R. C., Prausnitz J. M., Sherwood T. K., The Properties of Gases and Liquids. McGraw-Hill, New York, 1977.
    Rose J. W., Approximate equations for forced-convection condensation in the presence of a non-condensing gas on a flat plate and horizontal tube, Int. J. Heat Mass Transfer, Vol. 23 , pp.539-545, 1980.
    Rose J. W., Effect of pressure gradient in forced film condensation on a horizontal tube-effect of surface temperature variation, Int. J. Heat Mass Transfer, Vol.27, pp.39-47, 1984.
    Sparrow E. M. and Gregg J. L., A boundary-layer treatment of laminar-film condensation, J. Heat Transfer, Vol. 81, pp. 13-18, 1959.
    Sparrow E. M., Eckert E.R.G., Effects of superheated vapor and noncondensable gases on laminar film condensation, AIChE J. 7, 473–477, 1961.
    Singer R. M. and Preckshot G. W. Proc Heat Transfer and Fluid Mechanics, Inst. 14, pp.205, 1963.
    Sparrow E. M. and Lin S. H., Condensation heat transfer in the presence of a noncondensable gas, Trans. ASME, J. Heat Transfer, pp.430-436, 1964.
    Shekriladze, I. G., and Gomelauri, V. I., Theoretical Study of Laminar Film Condensation of Flowing Vapour, Int. J. Heat Mass Transf., 9, pp. 581–591, 1966.
    Sparrow E.M., Marschall E., Binary, gravityflow film condensation, Trans. ASME, 205-211, 1969.
    Slegers L. and Seban R. A., Laminar film condensation of steam containing small concentrations of air, Int. J. Heat Mass Transfer., 13, 1941–1947, 1970.
    Souza-Santos, Marcio L. de., Explicit forms for the calculation of heat and momentum transfer coefficients for vapour condensation on surfaces of-various forms, Canadian J. of Chem. Engng., 68, pp.29-37, 1990.
    Semenov V. P., Shkiover G. G., Usachev A. M. and Semenova T. P., Enhancement of heat transfer in condensation of steam on a horizontal non-circular pipe, Heat Transfer-Soviet Research 22, no.l, pp.15-20, 1990.
    Shigechi T., Kawa N., Tokita Y., and Yamada T., Film condensation heat transfer on a finite-size horizontal plate facing upward, Trans. JSME series B, Vol. 56 , pp. 205-210, 1990.
    Sarma, P. K., Vijayalakshmi, B., Mayinger, F., and Kkac, S.,Turbulent Film Condensation on a Horizontal Tube with External Flow of Pure Vapors, Int. J. Heat Mass Transfer, Vol.41, pp.537-545, 1998.
    Sarma P. K., Reddy M. A., Bergles A. E., and Kakac Sadik, Condensation of vapours on a fin in the presence of non-condensable gas, Int. J. Heat Mass Transfer, Vol. 44, pp.3233-3240, 2001.
    Siow, E.C., Ormiston, S.J., Soliman, H.M.,A two-phase model for laminar film condensation from steam-air mixtures in vertical parallel-plate channels ,HEAT AND MASS TRANSFER, 40 (5): 365-375, MAR, 2004.
    Som S.K. and Chakraborty S., Film condensation in presence of non-condensable gases over horizontal tubes with progressively increasing radius of curvature in the direction of gravity, Int. J. Heat Mass Transfer, Vol.49, pp. 594–600, 2006.
    Tagami T, Interim Report On Safety Assessment And Facilities Establishment Project For June 1965. No. 1, Japanese Atomic Energy Research Agency, 1965.
    Taghavi, K., "Effect of surface curvature on laminar film condensation," J. Heat Transfer, pp. 268-270, 1988.
    Terasaka H and Makita A, Numerical Analysis of the PHEBUS Containment Thermal Hydraulics. J Nuc Sci Technol 34(7):666-678, 1997.
    陶文銓編著,數值熱傳學,西安,西安交通大學出版社,1998。
    Uchida H, Oyama A, Togo Y, Evaluation of Postincident Cooling System of Light-Water Power Reactors. Vol 30. International Conference of The Peaceful Uses of Atomic Energy, Geneva, United Nations, New York, pp.93-104, 1964.
    Uehara H., Kinoshita E., and Matsuda, S., Theoretical Study on Turbulent Film Condensation on a Vertical Plate, ASME/JSME Thermal Engineering Conference, Vol.2, pp.391-397, 1995.
    Uehara H., Kinoshita E., Wave and turbulent film condensation on a vertical surface (Correlation for average heat-transfer coefficient), Journal of the Japan Society of Mechanical Engineers (B), pp.616, 1997.
    Volchkov E. P., Terekhov V. V., and Terekhov V. I., Heat and mass transfer in a boundary layer during vapor condensation in the presence of noncondensing gas, Heat Transfer Research, Vol. 28, pp. 296-304, 1997.
    Wallace, D. J., ”A study of a influence of vapor velocity upon condensation on a horizontal tube,” PhD Thesis, University of Strathclyde, Glasgow, United Kingdom,1975.
    Webb, R. L., Rudy, T. M. and Kedzierski, M. A., Prediction of the Condensation Coefficient on Horizontal, Integral-Fin Tubes, Journal of Heat Transfer, Vol. 107, 369-376, 1985.
    Wang, C. Y., Jiang, Z. and Yi, Feng, Laminar film condensation of pure saturated vapors on horizontal elliptical tubes, Proceedings of International Symposium on Phase Change Heat Transfer, 307-311, May pp. 20-23, 1988.
    Wagner W. and A. Pru, The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use, J. Phys. Chem. Ref. Data, 31, 387-535, 2002.
    Wang C. C. and Chen C. K., Combined free and forced convection film condensation on a finite-size horizontal wavy plate, Trans. ASME J. Heat Transfer, Vol. 124 , pp. 573-576, 2002.
    Yang S. A. and Chen C. K., Laminar film condensation on a finite-size horizontal plate with suction at the wall, Appl. Math. Modeling, Vol. 16, pp. 325-329, 1992.
    Yang, S. A. and Chen C. K., Role of Surface-Tension and Ellipticity in Laminar-Film Condensation on a Horizontal Elliptic Tube, International Journal of Heat and Mass Transfer 36(12), pp.3135-3141, 1993.
    Yang Y. T., Chen C. K., and Hsu P. T., Laminar film condensation on a finite-size horizontal wavy disk, Appl. Math. Modelling, Vol.21, pp. 139-144, 1997.
    Yang, S. A., Superheated laminar film condensation on a nonisothermal horizontal tube. Journal of Thermophysics and Heat Transfer 11(4), pp.526-532, 1997.
    Yang Yue-Tzu, Hsu Pao-Tung, and Chen Cha’o-Kuang, Laminar Film Condensation on a Finite-Size Horizontal Wavy Disk, Applied Mathematical Modeling, Vol. 21, pp. 139-144, 1997.
    Yang S. A. and Hsu C. H., Free- and forced-convection film condensation from a horizontal elliptic tube with a vertical plate and horizontal tube as special cases. International Journal of Heat and Fluid Flow 18(6), pp.567-574, 1997.
    Yang S. A., Superheated laminar film condensation on a nonisothermal horizontal tube, Journal of Thermophysics and Heat Transfer, v 11, n 4, Oct-Dec, pp.526-532, 1997.
    Yang S. A. and Lin Y. T., Turbulent film condensation on a non-isothermal horizontal tube-effect of eddy diffusivity, Applied Mathematical Modelling 29(12), pp.1149-1163, 2005.

    下載圖示 校內:立即公開
    校外:2009-07-09公開
    QR CODE