簡易檢索 / 詳目顯示

研究生: 陳宏政
Chen, Hung-Cheng
論文名稱: 製備具濃度梯度之多層膜有機光電元件
Fabrications of Concentration Gradient Multilayers for Organic Photoelectric Devices
指導教授: 郭昌恕
Kuo, Changshu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 93
中文關鍵詞: 電沉積法塞吩聚合物有機光電元件分子自組裝碳六十
外文關鍵詞: self-assembled, electrodeposition, C60, photovoltaics, Poly thiophene
相關次數: 點閱:116下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中,使用三種不同的材料製作多層膜有機光電元件,分別是以噻吩為主體的共軛高分子,3-羥基噻吩聚合物(poly(thiophene-3-acetic acid), PTAA)作為電子貢獻體(donor),以及碳六十(fullerene[60], C60)及砒碇化碳六十(pyridine-functionalized fullerene[60], C60Py)為電子接受體(acceptor),利用靜電分子自組裝技術(self-assembled multilayers)及逐層電沉積技術(layer-by-layer electrodeposition)製造多層膜有機光電元件。
    分子自組裝技術藉由不同的參數,例如:溶液的酸鹼值,浸泡的時間,高分子電解質(鹽類)濃度,可在奈米尺度下控制多層膜結構中單層膜之厚度,利用分子自主裝技術製造C60Py/PTAA多層膜有機光電元件具有大量的介面面積,有助於電子的分離與傳遞。利用分子自組裝技術調整電子貢獻體與電子接受體的比例,比例調整的精確程度可達分子等級,製造出具濃度梯度的多層膜有激光電元件。本研究亦利用電壓輔助的方式製作C60Py的濃度梯度,製造出具濃度梯度之多層膜有機光電元件。C60/PTAA有機光電元件則利用逐層電沉積技術製備,元件中C60的濃度梯度結構亦利用不同的外加電場強度製作。

    Multilayers organic photoelectric devices constructed by the electrostatic Self-Assembled Multilayers (SAMs) technology and Layer-by-Layer Electrodeposition were demonstrated. Three kinds of materials utilized to fabricate the multilayers organic photoelectric devices are the thiophene-based conjugated polyelectrolyte, poly(thiophene-3-acetic acid) (PTAA) severed as the electron donor; the fullerene[60] (C60) and pyridine-functionalized fullerene[60] (C60Py) severed as the electron acceptors. The C60Py/PTAA multilayers organic photoelectric devices were fabricated by SAMs. By controlling deposition parameters, such as pH values of solutions, concentrations of polyelectrolytes/salts, and the dipping time, SAMs technology are capable of manipulating the thickness of each single bilayer in nano scales. While the SAMs fabrication provides a large amount of interfacial area for the effective charge separation, the SAMs structures with concentration gradients in the donor and acceptor ratio were accurately controlled and manipulated in the molecular level. In this study, the voltage-assisted technology was developed to construct the concentration gradient of C60Py in SAMs processes. The C60/PTAA multilayer organic photoelectric devices were prepared by layer-by-layer electrodeposition. Concentration gradients of C60 were fabricated by various applied voltages as layer-by-layer electrodeposition.

    Acknowledgements................................................................I 摘要...........................................................................II Abstract.......................................................................IV I. Introduction.................................................................1 1.1 Overview..................................................................1 1.2 Motivation and Purpose....................................................5 II. Introduction, Model and Character...........................................7 2.1 Introduction of Photoelectric Devices.....................................7 2.2 Model of Conjugated Polymers.............................................11 2.3 Excited Model of Conjugated Polymers.....................................16 2.4 Characters of Organic Photovoltaics......................................24 2.5 Solar Spectrum...........................................................26 III. Instruments...............................................................29 3.1 UV-visible spectrometer (UV-vis): Perking Elmer Lambda 35................29 3.2 Fourier Transform Infrared spectrometer (FT-IR): JASCO model-460.........29 3.3 Elemental Analyzer (EA): Elementar vario EL Ⅲ...........................30 3.4 Thermogravimetry Analyzer (TGA): TA Instrument Model 2050................30 3.5 Photoluminescence (PL): Hitachi F-4500...................................31 3.6 Atomic Force Microscopy (AFM): NTMD P7LS.................................31 3.7 X-Ray Photoelectron Spectroscopy (XPS): Thermo VG-Scientific Σ Prob.....33 3.8 Electronics Measurement System: HP4143...................................34 3.9 Cyclic Voltammetry (CV): Autolab PGSTAT30................................34 IV. Experiments................................................................38 4.1 Chemicals................................................................38 4.2 Synthesis of Materials...................................................39 4.2.1 Synthesis of Poly (Thiophene-3-Acetic Acid) (PTAA)...................39 4.2.2 Synthesis of Pyridine-functionalized Fullerene[60] (C60Py)...........43 4.3 Layer-by-Layer Electrodeposition.........................................46 4.4 Self-assembled Multilayers (SAMs)........................................46 4.5 Fabrication of Devices...................................................46 4.5.1 Etching Process of ITO-coated Glass Slides...........................46 4.5.2 Cleaning Process of ITO-coated Glass Slides..........................47 4.5.3 Fabrication of Multilayer Structure..................................47 4.5.4 Thermal Deposition of Metal Electrode................................49 V. Discussions and Results.....................................................52 5.1 Characterization of Chemical Compounds...................................52 5.1.1 Characterization of PTAA.............................................52 5.1.2 Characterization of C60Py............................................58 5.2 Self-assembled Multilayers...............................................59 5.3 Layer-by-Layer Electrodeposition.........................................68 5.4 Fabrication of Organic Photoelectric Devices.............................74 5.4.1 C60Py/PTAA Multilayers...............................................74 5.4.2 C60/PTAA Multilayers.................................................78 VI. Conclusion.................................................................83 VII. Future Work...............................................................85 VIII. Reference................................................................87

    1.Sun, S.-S.; Sariciftci, N. S., Organic Photovoltaics: Mechanisms, Materials
    and Devices. Talyor & Francis Groups: 2005.

    2.Kuo, C.; Kumar, J.; Tripathy, S. K.; Chiang, L. Y., Synthesis and properties
    of [60]fullerene-polyvinylpyridine conjugates for photovoltaic devices. Journal
    of Macromolecular Science - Pure and Applied Chemistry 2001, 38 A, (12), 1481.

    3.Gao, M.; Sun, J.; Dulkeith, E.; Gaponik, N.; Lemmer, U.; Feldmann, J., Lateral
    Patterning of CdTe Nanocrystal Films by the Electric Field Directed
    Layer-by-Layer Assembly Method. Langmuir 2002, 18, (10), 4098.

    4.Heeger, A. J., Nobel Lecture: Semiconducting and metallic polymers: The fourth
    generation of polymeric materials. Reviews of Modern Physics 2001, 73, (3),
    681.

    5.Tang, C. W., Two-Layer Organic Photovoltaic Cell. Applied Physics Letters 1986,
    48, (2), 183.

    6.Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C., Plastic Solar Cells.
    Advanced Functional Materials 2001, 11, (1), 15-26.

    7.Gratzel, M., Perspectives for dye-sensitized nanocrystalline solar cells.
    Progress in Photovoltaics: Research and Applications 2000, 8, (1), 171.

    8.Li, B.; Wang, L.; Kang, B.; Wang, P.; Qiu, Y., Review of recent progress in
    solid-state dye-sensitized solar cells. Solar Energy Materials and Solar Cells
    2006, 90, (5), 549.

    9.McGehee, K. M. C. a. M. D., Conjugated Polymer Photovoltaic Cells. Chemistry of
    materials 2004, 16, (23), 4533.

    10.Barker, J. A.; Ramsdale, C. M.; Greenham, N. C., Modeling the current-voltage
    characteristics of bilayer polymer photovoltaic devices. Physical Review B
    (Condensed Matter and Materials Physics) 2003, 67, (7), 075205.

    11.Nelson, J., Diffusion-limited recombination in polymer-fullerene blends and
    its influence on photocurrent collection. Physical Review B (Condensed Matter
    and Materials Physics) 2003, 67, (15), 155209.

    12.KITTEL, C., Introduction to Solid State Physics. 6th ed.; JOHN WILEY & SONS:
    1996.

    13.Heeger, A. J.; Su, W. P.; Schrieffer, J. R., Soliton excitations in
    polyacetylene. Physical Review B 1980, 22, (4), 2099.

    14.Moller, H. J., semiconductors for solar cells. Artech House: 1993.

    15.Bailey, S.; Brinker, D.; Curtis, H.; Jenkins, P.; Scheiman, D., Solar Cell
    Calibration and Measurement Techniques. In NASA, Ed. 1997; Vol. NASA Technical
    Memorandum 113155, IECEC–97534.

    16.Choi, J.; Rubner, M. F., Influence of the Degree of Ionization on Weak
    Polyelectrolyte Multilayer Assembly. Macromolecules 2005, 38, (1), 116.

    17.Ferreirat, M.; Rubner, M. F., Molecular-Level Processing of Conjugated
    Polymers. 1.Layer-by-Layer Manipulation of Conjugated Polyions. Macromolecules
    1998, 28, (21), 7107.

    18.Itano, K.; Choi, J.; Rubner, M. F., Mechanism of the pH-Induced Discontinuous
    Swelling/Deswelling Transitions of Poly(allylamine hydrochloride)-Containing
    Polyelectrolyte Multilayer Films. Macromolecules 2005, 38, (8), 3450.

    19.Royappa, A. T.; Rubner, M. F., Novel Langmuir-Blodgett Films of Conducting
    Polymers. 1. Polyion Complexes and Their Multilayer Heterostructures. Langmuir
    1992, 8, (12), 3168.

    20.Baldo, M. A.; Forrest, S. R., Interface-limited injection in amorphous organic
    semiconductors. Physical Review B 2001, 64, (8), 085201.

    21.L. G. Wade, J., Organic Chemistry. Prentice Hall: 2003.

    22.Taylor, R., The Chemistry of Fullerenes. World Scientific: 1995; Vol. 4.

    23.Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J., Polymer
    Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal
    Donor-Acceptor Heterojunctions. Science 1995, 270, (5243), 1789.

    24.Koh, W.; Dubois, D.; Kutner, W.; Jones, M. T.; Kadish, K. M., Simultaneous
    cyclic voltammetry and electrochemical quartz crystal microbalance studies of
    buckminsterfullerene (C60) film electrodeposition and tetra-n-butylammonium
    electrodping in acetonitrile. Journal of Physical Chemistry 1992, 96, (11),
    4163.

    25.Koh, W.; Dubois, D.; Kutner, W.; Jones, M. T.; Kadish, K. M., Electrosynthesis
    and Electrodoping of C60 (n = 0, 1, 2, or 3) Films: Electrochemical Quartz
    Crystal Microbalance Study in Acetonitrile Solutions of Alkali-Metal,
    Alkaline-Earth-Metal, and Tetra-n-butylammonium Cations. Journal of Physical
    Chemistry B 1993, 97, 6871.

    26.Jones, M. T.; Boulas, P.; Yan, Q.; Soucaze-Guillous, B.; Koh, W.; Kutner, W.;
    Czemuszewicz, R.; Kadish, K. M., Electrodeposited C60n- films: spectroscopic
    characterization. Synthetic Metals 1995, 70, (1-3 pt 2), 1359.

    27.Kamat, P.; Barazzouk, S.; Hotchandani, S.; Thomas, K. e., Nanostructured Thin
    Films of C60-Aniline Dyad Clusters: Electrodeposition, Charge Separation, and
    Photoelectrochemistry. Journal of European Chemistry 2000, 6, (21), 3914-3921.

    28.Barazzouk, S.; Hotchandani, S.; Kamat, P. V., Nanostructured Fullerene Films.
    Advanced Materials 2001, 21, (13), 1614.

    29.Szucs, A.; Budavari, V.; Berkesi, O.; Novak, M., Electrochemical hydrogenation
    of C60 fullerene films. Journal of Electroanalytical Chemistry 2003, 548, 131.

    30.Kutner, W.; Pieta, P.; Nowakowski, R.; Sobczak, J. W.; Kaszkur, Z.; McCarty,
    A. L.; D’Souza, F., Composition, Structure, Surface Topography, and
    Electrochemical Properties of Electrophoretically Deposited Nanostructured
    Fullerene Films. Chemistry of Materials 2005, 17, (23), 5635.

    31.Chlistunoff, J.; Cliffel, D.; Bard, A. J., Electrochemistry of fullerene
    films. Thin Solid Films 1995, 257, (2), 166.

    32.Hoppe, H.; Niggemann, M.; Winder, C.; Kraut, J.; Hiesgen, R.; Hinsch, A.;
    Meissner, D.; Sariciftci, N., Nanoscale Morphology of Conjugated
    Polymer/Fullerene-Based Bulk- Heterojunction Solar Cells. Advanced Functional
    Materials 2004, 14, (10), 1005-1011.

    33.Neamen, D. A., Semiconductor Physics and Devices. McGRAW HILL: 2003.

    34.Wang, J., Analytical Electrochemistry. 2nd ed.; WILEY-VCH: 2000.

    35.Nozik, A. J. In Advanced Concepts for Photovoltaic Cells, NCPV and Solar
    Program Review Meeting 2003, 2003; 2003; p 422.

    36.Blackburn, J. L.; Ellingson, R. J.; Micic, O. I.; Nozik, A. J., Electron
    Relaxation in Colloidal InP Quantum Dots with Photogenerated Excitons or
    Chemically Injected Electrons. Journal of Physical Chemistry 2005, 107, (1),
    202.

    37.Nozik, A. J., Exciton Multiplication and Relaxation Dynamics in Quantum Dots:
    Applications to Ultrahigh-Efficiency Solar Photon Conversion. Inorganic
    Chemistry 2005, 44, (20), 6893.

    38.Nozik, A. J., Quantum dot solar cells. Physica E: Low-dimensional Systems and
    Nanostructures 2002, 14, (1-2), 115.

    39.Xiaomei, J.; Sergey, B. L.; Igor, B. A.; Anvar, A. Z.; Richard, D. S.; Jeff,
    M. P.; Victor, I. K. In Nanocomposite solar cells based on conjugated polymer
    /PbSe quantum dot, 2005; Zakya, H. K.; Paul, A. L., Eds. SPIE: 2005; p 59381F.

    40.Schaller, R. D.; Klimov, V. I., High Efficiency Carrier Multiplication in PbSe
    Nanocrystals: Implications for Solar Energy Conversion. Physical Review
    Letters 2004, 92, (18), 186601.

    41.Klimov, V. I.; Mikhailovsky, A. A.; McBranch, D. W.; Leatherdale, C. A.;
    Bawendi, M. G., Mechanisms for intraband energy relaxation in semiconductor
    quantum dots: The role of electron-hole interactions. Physics Review B 2000,
    61, (20), R13 349.

    42.Soci, C.; Moses, D.; Xu, Q.-H.; Heeger, A. J., Charge-carrier relaxation
    dynamics in highly ordered poly(p-phenylene vinylene): Effects of carrier
    bimolecular recombination and trapping. Physical Review B (Condensed Matter
    and Materials Physics) 2005, 72, (24), 245204.

    43.Cabanillas-Gonzalez, J.; Virgili, T.; Lanzani, G.; Yeates, S.; Ariu, M.;
    Nelson, J.; Bradley, D. D. C., Photophysics of charge transfer in a
    polyfluorene/violanthrone blend. Physical Review B (Condensed Matter and
    Materials Physics) 2005, 71, (1), 014211.

    44.Petrella, A.; Cremer, J.; DeCola, L.; Bauerle, P.; Williams, R. M., Charge
    Transfer Processes in Conjugated Triarylamine-Oligothiophene-Perylenemonoimide
    Dendrimers. J. Phys. Chem. A 2005, 109, (51), 11687-11695.

    45.Xu, Q.-H.; Moses, D.; Heeger, A. J., Delayed emission from recombination of
    charge-separated pairs on polyfluorene chains in dilute solution. Physical
    Review B (Condensed Matter and Materials Physics) 2004, 69, (11), 113314.

    下載圖示 校內:2008-08-01公開
    校外:2008-08-01公開
    QR CODE