| 研究生: |
蔡宗吉 Tsai, Tzong-Jiy |
|---|---|
| 論文名稱: |
多重離散式及分散式時延類比中性系統之最佳/次最佳數位追蹤器設計 Optimal/Suboptimal Digital Tracker Designs for Analog Neutral Systems with Multiple Discrete and Distributed Time Delays |
| 指導教授: |
蔡聖鴻
Tsai, Sheng-Hong Jason |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 161 |
| 中文關鍵詞: | 進化規劃 、反覆學習控制 、觀測器 、高增益 、數位再設計 、次最佳 、最佳 、追蹤控制 、中性系統 |
| 外文關鍵詞: | high-gain, iterative learning control, evolutionary programming, observer, optimal, digital redesign, neutral system, suboptimal, tracking control |
| 相關次數: | 點閱:113 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本博士論文中,具有多重離散式及分散式時間延遲的類比中性系統之有限時間/無限時間的最佳/次最佳混合追蹤控制問題將被格式化並且研究。為了去解這追蹤控制問題,一種新的交替式(間接式)數位再設計趨進結合一些方法和計技巧被提出來設計具有預測特性的數位追蹤器,這些可以簡述如下:(i)設計以預測型為基礎的數位追蹤器:首先,選擇性能指標的權重矩陣使其具有高增益的特性。然後,牛頓中心和線性插補公式,以及一種新修正的矩形規則,被利用來建構相關的離散模型。最後,透過離散時間最佳控制理論,將可得到以預測型為基礎的數位追蹤器。(ii)設計以觀測器為基礎的數位追蹤器:當回授狀態不可測量時,新的擴大式數位再設計觀測器被提出來估測擴大式離散時間狀態向量。然後,藉由結合已發展出的數位追蹤器增益和數位觀測器,以觀測器為基礎的數位追蹤器被發展來完成想要的追蹤控制。(iii)設計以觀測器為基礎的反覆學習數位追蹤器:因為反覆學習控制有能力將低精確高重複性的系統轉換成高精確的系統。因此,這個反覆學習的控制技術被利用來設計以觀測器為基礎的最佳反覆學習數位追蹤器。(iv)設計以進化規劃為基礎的數位追蹤器:取進化規劃方法論在全部最佳化的優勢,吾人使用這進化規劃去搜尋最佳權重矩陣。然後,結合高增益的特性, 反覆學習控制的技術,和進化規劃演算法,以便發展出以進化規劃為基礎的最佳數位追蹤器,去改善以進化規劃為基礎的混合控制中性系統之追蹤性能。本博士論文所開發的數位控制律經由舉例和電腦模擬,證實能夠有效地實現追蹤控制的目標。深信,本文提出的方法和結果將有助於文獻上對混合中性多時延系統在追蹤控制方面之理論與實現的完整性。
In this dissertation, the finite-time/infinite-time optimal/suboptimal hybrid tracking control problems for analog neutral systems with multiple discrete and distributed time delays are formatted and studied. In order to solve the tracking control problems, a new alternative (indirect) digital redesign approach together with some methods and techniques is proposed to design the digital trackers, which can be briefly stated as follows: (i) Design the prediction-based digital trackers: First, select the weighting matrices of the performance index to have the high-gain property. Then, the Newton center and linear interpolation formula, together with a newly modified rectangular ruler, are utilized to construct the associate discrete models. Finally, by the discrete-time optimal control theory, the prediction-based digital trackers can be obtained. (ii) Design the observer-based digital trackers: When the feedback states are unmeasured, the new augmented digital redesign observers are proposed to estimate the augmented discrete-time state vector. Then, by combining the developed digital tracker gains and digital observer, the observer-based digital trackers are developed to achieve the desired tracking control. (iii) Design the observer-based iterative learning digital tracker: Since the iterative learning control is capable of turning a low-accuracy, high-repeatability system into a high-accuracy system. Thus, the iterative learning control technique is utilized to design the observer-based optimal iterative learning digital trackers. (iv) Design the evolutionary programming (EP)-based digital trackers: Take the advantage of EP methodology for global optimization, we use the EP to search the optimal weighting matrices. Then, by combining the high-gain property, iterative learning control technique, and EP algorithm, the EP-based digital trackers are developed to improve the tracking performance of the EP-based hybrid control neutral system. The effectiveness of developed digital control laws in this dissertation are demonstrated by illustrative examples. It is believed that the presented methods and results of this dissertation is helpful to complete the theories and implements in the literature of optimal tracking control of hybrid neutral multiple time-delay systems.
[1] P. Agathoklis and S. Foda. “Stability and the Lyapunov equation for delay differential system,” Int. J. Control. vol. 49(2), pp. 417-432, 1989.
[2] N Amann, D. H. Owens and E. Rogers, “Iterative learning control using optimal feedback and feed forward actions,” Int. J. Control. vol. 65(2), pp. 277-293, 1996.
[3] N Amann, D. H. Owens and E. Rogers, “Predictive optimal iterative learning control,” Int. J. Control, vol. 69(2), pp.203-226, 1998.
[4] J. M. Ananjevski and V. B. Kolmanovskii, “Stabilization of some nonlinear hereditary mechanical systems,” Nonlinear Anal. Th. Methods & Applic., vol. 15(2), pp.101-114, 1990.
[5] P. J. Angeline, G. M. Saunders and J. B. Pollack, “An evolutionary algorithm that constructs recurrent neural networks,” IEEE Trans. Neural Networks, vol. 5-1, pp. 54-65, 1994.
[6] S. Arimoto, S. Kawamura and F. Miyazaki, “Bettering operation of robotics,” Journal of Robotic System, vol. 1(2), pp. 123-140, 1984.
[7] V. V. Assche, M. Dambrine, J. F. Lafay and J. P. Richard, “Some problems arising in the implementation of distributed-delay control laws,” in Proceedings of the 38th Conference on Decision & Control, Phoenix, Arizona USA, pp. 4668-4672, 1999.
[8] T. Bäck and H.P. Schwefel, “An overview of evolutionary algorithms for parameter optimization,” Evol Comput., vol. 1, pp. 1-23, 1993.
[9] A. Bellen, N. Guglielmi and A. E. Ruehli, “Methods for linear systems of circuits delay differential equations of neutral type,” IEEE Transactions on Circuits and Systems, vol. 46, pp. 212-216, 1999.
[10] K. P. M. Bhat and H. N. Koivo, “An observer theory for time-delay systems,” IEEE Trans. Automat. Control AC vol. 21 (4), pp 266-269, 1976.
[11] Z. Bien and J. X. Xu, Iterative learning control: analysis, design, integration, and application, Boston: Kluwer Academic, 1998.
[12] M. Boutayeb and M. Darouach, “A Kalman-type observer for discrete-time systems with multiple delays,” CDC’98, Tampa, USA, vol 4, pp. 4492-4493, 1998.
[13] K. Buchheit, M. Pandit and M. Befort, “Optimal iterative learning control of an extrusion plant,” Pro. of IEE International Conference of Control, Coventry, UK, pp. 652-657, 1994.
[14] Y. J. Cao, “Eigenvalue optimization problems via evolutionary programming,” Electronics Letters, vol. 33, pp. 642-643, 1997.
[15] G. Casalino and B. Bartolini, “A learning procedure for the control of movements of robotic manipulators,” in IASTED Symposium on Robotics and Automation, pp. 108-111, 1984.
[16] T. Chen and B. Francis, Optimal Sampled-Data Control Systems, Springer-Verlag, New York, 1995.
[17] J. J. Craig, “Adaptive control of manipulators through repeated trials,” in Proceedings of the American Control Conference, pp. 1566-1573, 1984.
[18] M. Darouach, P. Pierrot and E. Richard, “Design of reduced-order observers without internal delays,” IEEE Trans. Automatic Control AC, vol. 44 (9), PP 1711-1713, 1999.
[19] L. Dugard and E. I. Verriest, Stability and Control of Time-Delay Systems, Springer-Verlag, New York, 1997.
[20] W. Durham, “Constrained control allocation,” Journal of Guidance, Control, and Dynamics, vol. 16, pp. 717-725, 1993.
[21] K. Engeborghs, M. Dambrine and D. Roose, “Limitations of a class of stabilization methods for delay systems,” IEEE Transactions on Automatic Control, vol. 46, pp. 336-989, 2001.
[22] L.J. Fogel, “Toward inductive inference automata,” in Proceedings of the International Federation for Information Processing Congress, Munich, Germany, pp. 395–399, 1962.
[23] L. J. Fogel, A. J. Owens and M. J. Walsh, Artificial Intelligence through Simulated Evolution, John Wiley and Sons, New York, 1966.
[24] D. B. Fogel, “An evolutionary approach to the traveling salesman problem,” Biol. Cybern., vol. 60-2, pp. 139-144, 1988.
[25] D.B. Fogel, Evolving Artificial Intelligence, Ph.D. Thesis, University of California, San Diego, 1992.
[26] D. B. Fogel, “Applying Evolutionary Programming to Selected Control Problems,” Comp. Math. Appl., vol. 27(11), pp. 89-104, 1994.
[27] D. B. Fogel, “Asymptotic Convergence Properties of Genetic Algorithms and Evolutionary Programming: Analysis and Experiments,” Cybernetics and Systems, vol. 25(3), pp. 389-407, 1994.
[28] D. B. Fogel, Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, IEEE Press, Piscataway, NJ, 1995.
[29] D. B. Fogel, Evolutionary Computation. Piscataway, NJ: IEEE Press, 1995.
[30] D. B. Fogel, Evolutionary Computation: The Fossil Record, New Jersey: IEEE Press, 1998.
[31] D. B. Fogel, An overview of evolutionary programming, Evolutionary Algorithms, IMA Volumes in Mathematics and its Applications, L. Davis, K. De Jong, M. Vose, and L.D. Whitley (eds.), Springer-Verlag, Berlin, vol. 11, pp. 89-109, 1999.
[32] D. B. Fogel, Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, 2nd Ed., IEEE Press, Piscataway, NJ, in press, 1999.
[33] M. French and E. Rogers, “Non-linear iterative learning by an adaptive Lyapnov technique,” Int. J. Contr., vol. 73(10), pp. 840-850, 2000.
[34] J. A. Frueh and M. Q. Phan, “System identification and inverse control using input-output data from repetitive trials,” in Proceedings of the 2nd Asian Control Conference, 2. ASCC, Seoul, South Korea, pp. 251-254, 1997.
[35] J. A. Frueh and M. Q. Phan, “Linear quadratic optimal learning control (LQL),” International Journal of Control, vol. 73(10), pp. 832-839, 2000.
[36] K. Furuta and M. Yamakita, “The design of a learning control system for multi-variable systems,” in Proceeding of the 30th Conference on Decision and Control, Philadelphia, Pennsylvania, USA, pp. 371-376,1987.
[37] F. Glover, Tabu search - part 1, ORSA J Computing, 3, pp. 190-206, 1989.
[38] F. Glover,. Tabu search - part 2,. ORSA J Computing, 1, pp. 4-32, 1990.
[39] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA, 1989.
[40] H. Gorecki, S. Fuksa, P. Grabomski and A. Korytowski, Analysis Synthesis of Time Delay Systems, John Wiley, 1989.
[41] V. D. Gorjachenko, S. L. Zolotarev and V. A. Kolchin, Qualitative Methods in Nuclear Reactor Dynamics, in Russian, Moscow, 1988.
[42] M. Green and D. J. N. Limebeer, Linear Robust Control, Upper Saddle River, NJ: Prentice-Hall, 1995.
[43] K. Gu, Q. L. Han, A. C. Luo and S. I. Niculescu, “Discretized Lyapunov functional for systems with distributed delay and piecewise constant coefficients,” International Journal Control, vol. 74, pp. 737-744, 2001.
[44] S. M. Guo, Effective Digital Chaotic Orbit Tracker and Kalman Filtering for Nonlinear Stochastic Hybrid Systems, Ph. D. Dissertation by University of Houston, May, 2000.
[45] S. M. Guo, L. S. Shieh, G. Chen and C. F. Lin, “Effective chaotic orbit tracker: a prediction-based digital redesign approach,” IEEE Transaction on Circuits and Systems --I, Fundamental Theory and Applications, vol. 47(11), pp. 1557-1570, 2000.
[46] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.
[47] J. H. Halton, “On the efficiency of certain quasirandom sequences of points in evaluating multidimensional integrals,” Numerische Mathematik, vol. 2, pp. 84–90, 1960.
[48] Q. L. Han, “On delay-dependent stability criteria for neutral delay-differential systems,” International Journal of Applied Mathematics and Computer Science, vol. 11, pp. 965-976, 2001.
[49] S. Hara and Y. Yamamoto, “ Synthesis of repetitive control systems and its applications,” in Proceedings of the 24th IEEE Conference on Decision and Control, pp. 326-327, 1985.
[50] J. H. Holland, “Outline for a logical theory of adaptive systems,” Journal of the Association for Computing Machinery, vol. 3, pp. 297–314, 1962.
[51] J. H. Holland, Adaptation in Natural and Artificial Systems, The University of Michigan Press, Ann Arbor, MI, 1975.
[52] R. Horowitz, “Learning control of robot manipulators,” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 115, pp. 402—411, 1993.
[53] C. H. Houpis and G. B. Lamont, Digital Control System, McGraw Hill, 1985.
[54] G. D. Hu and G. D. Hu, “Some simple stability criteria for neutral delay-differential systems,” International Journal of Applied Mathematics and Computer Science,vol. 80, pp. 257-271, 1996.
[55] G. D. Hu and G. D. Hu, “Simple criteria for stability of neutral systems with multiple delays,” International Journal of System Science, vol. 28, pp. 1325-1328, 1997.
[56] C. M. Huang, J. S. H. Tsai, R. S. Provence and L. S. Shieh, “The observer-based linear quadratic sub-optimal digital tracker for analog systems with input and state delays,” Optimal Control Applications and Methods, vol. 24, pp. 197-236, 2003.
[57] T. Inoue, M. Nakano and S. Iwai, “High accuracy control of a proton synchrotron magnet power supply,” in Proceedings of the 8th World Congress of IFAC, pp. 216—221, 1981.
[58] K. Ito and T. J. Tarn, “A linear quadratic optimal control for neutral systems,” Nonlinear Analysis, Theory, Methods and Applications, vol. 9, pp. 699-727, 1985.
[59] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, "Optimization by simulated annealing,” Science, vol. 220, pp. 671-680, 1983.
[60] V. B. Kolmanovskii and V. R. Nosov, Stability and Periodic Solution of Regulated Systems with Delay, Nauka, Moscow, 1981. (In Russian)
[61] V. B. Kolmanovskii and V. R. Nosov, Stability of Functional Differential Equations, Acad. Press, New York-London, 1986.
[62] V. Kolmanovskii and A. Myshkis, Applied Theory of Functional Differential Equations, MA: Kluwer, Boston, 1999.
[63] V. Kolmanovskii and J. P. Richard, “Stability of some linear systems with delays,” IEEE Transactions on Automatic Control, vol. 44, pp. 984-989, 1999.
[64] J. R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press, Cambridge, MA, 1992.
[65] S. C. Kramer and R. C. IV. Martin, “Direct optimization of gain scheduled controllers via genetic algorithms,” Journal of Guidance, Control, and Dynamics, vol. 19, pp. 636-642, 1996.
[66] K. Krishnakumar and D. E. Goldberg, “Control system optimization using genetic algorithm,” Journal of Guidance, Control, and Dynamics, vol. 15, pp. 735-740, 1992.
[67] Y. Kuang, Delay differential equations with applications in population dynamics, Math. in Sci. Eng. 191, San Diego: Academic Press, 1993.
[68] B. C. Kuo, Digital Control Systems. New York: Holt, Rinehart and Winston, 1980.
[69] H. H. Kwakernaak and R. Sivan, Linear Optimal Control Systems, Wiley, New York, 1972.
[70] F. L. Lewis, Optimal Control, Wiley, New York, 1986.
[71] J. Leyva-Ramos and A. E. Rearson, “An asymptotic modal observer for linear autonomous time lag systems,” IEEE Trans. Automatic Control AC-vol. 40(7), PP 1291-1294, 1995.
[72] X. Li and C. E. deSouza, “Delay-dependent robust stability and stabilization of uncertain linear delay system: A linear matrix inequality,” IEEE Transactions on Automatic Control, vol. 42, pp. 1144-1148, 1997.
[73] R. W. Longman, “Supplementary material: tutorial on learning control,” IEEE Conferences on Intelligent Control, Arlington, VA, 1991.
[74] M. S. Mahmoud, Robust Control and Filtering for Time-Delay Systems, Marcel Decker, New York, 1999.
[75] M. S. Mahmoud, “Robust control of linear neutral systems,” Automatica, vol. 36, pp. 757-764, 2000.
[76] M. Malek-Zavarei and M. Jamshidi, Time-Delay Systems. Analysis, Optimization and Applications, ser. Systems and Control, Amsterdam, The Netherlands: North Holland, 9, 1987.
[77] K. F. Man, K. S., Tang and S. Kwang, Genetic Algorithms: Concepts and Design, London: Springer-Verlag, 1999.
[78] A. Manitius and A. Olbort, “Finite spectrum assignment problem for systems with delays,” IEEE Transactions on Automatic Control, vol. 24, pp. 541-553, 1979.
[79] J. S. Marques and J. M. Lemos, “Optimal and Suboptimal Shape Tracking Based on Multiple Switched Dynamic Models,” Image and Vision Computing, vol. 19, pp 539-550, 2001.
[80] N. Matsumom. “On state space representations of LBR and BR matrices for N-D discrete-time systems and time delay systems,” in Proceeding of the IEEE Pacific Rim Conference on Communications, Computers, and Signal Processing, Victoria. B. C. Canada, pp. 400-405, 1991.
[81] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, Springer-Verlag, New York, 1996.
[82] R. H. Middleton, G. C. Goodwin and R. W. Longman, “ A method for improving dynamic accuracy of a robot performing a repetitive task,” International Journal of Robotics Research, vol. 8, pp. 67-74, 1989.
[83] K. L. Moore: Iterative learning control for deterministic systems, Springer-Verlag Series on Advances in Industrial Control, Springer-Verlag, London, 1993.
[84] K. L. Moore, “Iterative learning control-an expository overview,” Applied Computational Controls, Signal Processing and Circuits, vol. 1, pp. 151-214, 1998.
[85] K. L. Moore, “Multi-loop control approach to designing iterative learning controller,” in Proc. 37th IEEE CDC, PP. 666-671, 1998.
[86] K. L. Moore, “An iterative learning control algorithm for systems with measurement noise,” in Proc. 38th IEEE CDC, PP. 270-275, 1999.
[87] S. -I. Niculescu, “ memoryless control of with a -stability constraint for time-delay systems: An LMI approach,” IEEE Transactions on Automatic Control, vol. 43, pp. 739-743, 1998.
[88] S. –I. Niculescu, Delay Effects on Stability, Springer-Verlag, London, 2001.
[89] D. A. O’Connor and T. J. Tarn, “On stabilization by state feedback for neutral differential difference equations,” IEEE Transactions on Automatic Control, vol. 28, pp. 615-618, 1983.
[90] K. Ogta, Discrete-time Control Systems, Prentice-Hall: Englewood Cliffs, NJ., 1987.
[91] Y. S. Osipov, “Stabilization of controlled system with delay,” Diff. Uravneniya, vol. 1(5), pp. 605-618, 1965.
[92] D. H. Owens and G. Munde, “Error convergence in an adaptive iterative learning controller,” Int. J. Contr., vol. 73(10), pp851-857, 2000.
[93] Z. J. Palmor, Modified predictors, The Control Handbook, W. Levine, Ed: CRC Press, Section 10.9, 1996.
[94] L. Pandolfi, “On feedback stabilization of functional differential equations,” Bellettino U.M.I., vol. 12, pp. 626-635, 1975.
[95] J. H. Park and S. Won, “Stability analysis for neutral delay-differential systems,” Journal of Franklin Institute, vol. 337,pp. 1-9, 2000.
[96] A. E. Pearson and Y.A. Fiagbedzi, “An observer for time lag systems,” IEEE Trans. Automatic Control AC-vol. 34(8), PP 775-777, 1989.
[97] M. Q. Phan and R. W. Longman, “A mathematical theory of learning control for linear discrete multivariable systems,” in Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, Minneapolis, Minnesota, pp. 740—746, 1988.
[98] M. Q. Phan and J. –N. Juang, “Design of learning controllers based on anauto-regressive representation of a linear system,” Journal of Guidance, Control, and Dynamics, vol. 19, pp. 355—362, 1996.
[99] E. Polak. and Y. Y. Wardi, “Nondifferentiable optimization algorithm for designing control systems having singular value inequalities,” Automatica, vol. 18, pp. 267-283, 1982.
[100] K. M. Przyluski and A. Sosnowski, “On observers for linear discrete-time systems with delays and unknown disturbances,” Systems Control Letter, vol. 13, pp 165-170, 1989.
[101] N. Rafee, T. Chen and O. P. Malik, “A technique for optimal digital redesign of analog controllers,” IEEE Trans. Control Systems Technoogy, vol. 5, pp. 89–99, Jan. 1997.
[102] A. Ralston, A First Course in Numerical Analysis, McGraw-Hill, 1965.
[103] V. Retbock, K. L. Teo, and L. S. Jennings, “Optimal and Suboptimal Feedback Controls for a Class of Nonlinear Systems,” Computers Math. Applic., vol. 31(6), pp. 71-86, 1996.
[104] I. Rechenberg, Cybernetic solution path of an experimental problem, Royal Aircraft Establishment, Library Translation No. 1122, Farnborough, Hants, UK, 1965.
[105] V. Rezvan, Absolute stability of automatic systems with delay, Nauka, Moscow ,1983.
[106] R. P. Roesser, “A discrete state-space model for linear image processing,” IEEE Transactions on Automatic Control, vol. 20, pp. 1-10, 1975.
[107] H.-P. Schwefel, Kybernetische Evolution als Strategie der experimentellen Forschung in der Stromungstechnik, Diplomarbeit, Technische Universitat, Berlin, 1965.
[108] A. V. Sebald and J. Schlenzig, “Minimax design of neural net controllers for highly uncertain plants,” IEEE Trans. Neural Networks, vol. 5(1), pp. 73-82, 1994.
[109] L. S. Shieh, Y. T. Tsai and C. T. Wang, “Matrix sector functions and their applications to system theory,” Proc. IEE-D, vol. 131, pp. 171-181, 1984.
[110] L. S. Shieh, J. S. H. Tsai and R. E. Yates, “The generalized matrix sector function and the separation of matrix eigenvalues,” IMA mathematic Control Inf., vol. 2, pp 251-258, 1985.
[111] L. S. Shieh, J. S. H. Tsai and S. R. Lian, “Determining continuous-time state equations from discrete-time state equations via the principal qth root method,” IEEE Transactions on Automatic Control, vol. 31, pp. 454-457, 1986.
[112] L. S. Shieh, W. M. Wang, and N. P. Coleman, “Optimal digital redesign of continuous-time controllers,” Computer Mathematics and Applications, vol. 22, pp. 25-35, 1991.
[113] L. S. Shieh, J. L. Zhang, and J. W. Sunkel, “A new approach to the digital redesign of continuous-time controllers,” Control-Theory and Advanced Technology, vol. 8, pp. 37-57, 1992.
[114] L. S. Shieh, G. Chen and J. S. H. Tsai, “Hybrid sub-optimal control of multi-rate multi-loop sampled-data systems,” International Journal of Systems Science, vol. 23, pp. 839-854, 1992.
[115] M. Slemrod and E. F. Infante, “Asymptotic stability criteria for linear systems of differential equations of neutral type and their discrete analogues,” Journal of Mathematical Analysis Applications, vol. 38,pp. 399-415, 1972.
[116] O. J. M. Smith, “Closer control of loops with dead time,” Chem. Eng. Prog, vol. 53, pp. 217-219, 1957.
[117] M. X. Sun and B. J. Huang, Iterative learning control [in Chinese], Beijing: National Defence Industrial Press, 1999.
[118] T. Tao, R. L. Kosut and G. Aral, “Learning feedforward control,” Proc. of ACC, pp. 2575-2579, Baltimore, June, 1994.
[119] T. J. Tarn, T. Yang, X. Zeng and C. Gu, “Periodic output feedback stabilization of neutral systems,” IEEE Transactions on Automatic Control, vol. 41, pp. 511-521, 1996.
[120] M. Tomizuka, T. C.Tsao and K. K. Chew, “Discrete-time-domain analysis and synthesis of repetitive controllers,” ASME Journal of Dynamics, Measurements, and Control, vol. 3, pp. 353—358, 1989.
[121] H. Trinh and M. Aldeen, “Comments on an asymptotic modal observer for discrete-time systems with multiple delays,” IEEE Trans. Automatic Control AC-vol. 42 (5), pp. 742-745, 1997.
[122] Y. T. Tsay, L. S. Shieh and J. S. H. Tsai, “A fast method for computing the principal nth root of complex matrices,” Linear Algebra Application, vol. 76, pp 205-221, 1986.
[123] J. S. H. Tsai, L. S. Shieh and R. E. Yates, “Fast and stable algorithms for computing the principal nth root of a complex matrix and the matrix sector function,” Comput. Math. Application, vol. 15(11), pp. 903-913, 1988.
[124] J. S. H. Tsai, L. S. Shieh, Zhang, J. L. and Coleman, N. P., “Digital redesign of pseudo-continuous-time suboptimal regulators for large-scale discrete systems,” Control-Theory and Advanced Technology, vol. 5(1), pp. 37-65, 1989.
[125] J. S. H. Tsai, M. S. Chen and F. C. Kung, “Optimal design and optimal digital redesign for continuous-time input time-delay systems,” Control Theory and Advanced Technology, vol. 8, pp. 315-340, 1992.
[126]] J. S. H. Tsai, Chang, Y. P. and Shieh, L. S., “Multi-rate suboptimal digital redesign of a cascaded continuous-time input time-delay system,” Computer & Electrucal
[127] M. Uchiyama, “ Formulation of high-speed motion pattern of a mechanical arm by trial,” Transactions of the Society for Instrumentation and Control Engineers, vol. 14, pp. 706-712, 1978.
[128] J. C. Van Der Corput, Verteilungsfunktionen, Proc. Kon Akad. Wet., Amsterdam 38 A13-A21, pp. 1058-1066, 1935.
[129] E. I. Verriest, “Robust stability and adaptive control of time-varying neutral systems,” in Proceedings of the 38” CDC, Phoenix, Arozina USA, pp. 4690-4695, 1999.
[130] D. W. Wang, “Convergence and robustness of discrete time nonlinear systems with iterative learning control,” Automatica, vol. 34(11), pp. 1445-1448, 1998.
[131] H. Wang, J. Lam, S. Xu and S. Huang, “Robust control for a class of uncertain neutral delay systems,” International Journal of Systems Science, vol. 33, pp. 611-622, 2002.
[132] W. J. Wang and L. G. Mau, “Stabilization and estimation for perturbed discrete time-delay large-scale systems,” IEEE Trans. Automatic Control AC-vol. 31 (6), pp. 543-550, 1996.
[133] K. Watanabe, “Finite spectrum assignment and observer for multivariable systems with commensurate delays,” IEEE Trans. Automatic Control AC-vol. 31(6), pp. 543-550, 1996.
[134] C. P. Wei and J. S. H. Tsai, “Predictor control and suboptimal digital redesign for continuous-time input time-delay systems,” IMA Journal of Mathematical Control and Information, vol. 16, pp.377-390, 1999.
[135] Z. D. Xie and S. L. Xie, “Development and expectation for learning control theory of nonlinear systems [in Chinese],” Control Theory and Applications, vol. 17(1), pp. 4-8, 2000.
[136] J. X. Xu, “Analysis of iterative learning control for a class of nonlinear discrete-time systems,” Automatica, vol. 33(10), pp. 1905-1907, 1997.
[137] J. X. Xu and Y. Tan, “A composite energy function based sub-optimal learning control approach for nonlinear systems with time-varying parametric uncertainties,” in Proc. 39th IEEE CDC, pp. 3837-3842, 2000.
[138] S. Xu, J. Lan, C. Yang and E. I. Verriest, “An LMI approach to guaranteed cost control for uncertain linear neutral delay systems,” International Journal of Robust and Nonlinear Control, vol. 13, pp. 35-53, 2003.
[139] R. Yanushevsky, “Lyapunov’s functional and related optimal problems for differential -difference systems,” Comp. Math. Appl., vol. 25(10/11), pp. 89-101, 1993.
[140] Q.-C. Zhong, “On distributed delay in linear control laws. Part I: Discrete-delay implementations,” IEEE Transactions on Automatic Control, vol. 49, pp. 2074-2080, 2004.
[141] K. Zhou, J. C. Doyle and K. Glover, Robust and Optimal Control, Upper Saddle River, NJ: Prentice-Hall, 1996.