簡易檢索 / 詳目顯示

研究生: 張宇誠
Jang, Yu-Cheng
論文名稱: 具封閉型耦合結構非接觸式感應供電軌道之研究
Study on Contactless Power Transfer Monorail Systems with Closed-Type Inductive Coupler
指導教授: 李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 78
中文關鍵詞: 耦合結構非接觸式供電軌道
外文關鍵詞: inductive structure, contactless, inductive power transmission track
相關次數: 點閱:63下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨係研究非接觸式電力傳輸技術應用於感應供電軌道系統,且以封閉型耦合結構作為特點。一般感應供電軌道系統,其初級側為長纜線,次級側為E型鐵芯,而此耦合結構以傳輸效率來說並非最佳之型態。故本文提出一改良型耦合結構,係由E型鐵芯與I型鐵芯組合成封閉形狀,具有高耦合係數與可拆卸機制。文中先以模擬方式驗證此結構之低磁阻特性,接著製作一長8公分、寬4.5公分、高為1.2公分之封閉型鐵芯,並於一長1.2公尺之初級側纜線軌道上實際運作。而初級子系統以鎖相迴路來調整系統操作頻率,次級側子系統以具穩壓控制之降壓式換器輸出24V直流電壓,透過實驗結果得知此封閉型耦合結構最高之耦合效率近76%。

    The purpose of this thesis is to study the inductive power transfer technique for contactless power transfer monorail systems, and the main feature is the closed-type inductive coupler. In most monorail systems, the power pickups are based on an E shape, however it is not the best one. This thesis proposes a modified pickup which consists of one E core and one I core. The E core forms a closed shape with the I core, hence its coupling coefficient is high and can remove from the track unrestrictedly. The low reluctance feature of the proposed pickup is verified by simulation. Furthermore, an 8cm-length, 4.5cm-width, and 1.2cm-height pickup model is produced and tested. And at the primary subsystem, the frequency is adjusted by PLL. At the secondary subsystem, the buck converter outputs a stable 24V. According to the experimental result, the highest power transfer efficiency of the closed-type pickup is approximately 76%.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1 研究動機 1 1-2 研究背景 2 1-3 研究目的 4 1-4 研究方法 5 1-5 論文大綱 6 第二章 非接觸式電力傳輸系統原理 7 2-1 前言 7 2-2 鬆耦合變壓器模型 7 2-2-1感應耦合基礎原理 7 2-2-2耦合係數量測 10 2-3 非接觸式線性供電軌道原理 11 2-4 非接觸式線性供電軌道之耦合結構 12 2-4-1耦合結構之磁性材料 12 2-4-2耦合結構之幾何形狀 13 2-5 封閉型耦合結構 17 第三章 非接觸式供電軌道系統分析與設計 18 3-1 前言 18 3-2 非接觸式電力傳輸系統分析 18 3-2-1高頻交流電源 18 3-2-2感應耦合結構 20 3-2-3諧振電路 23 3-2-4整流濾波與降壓式轉換器 28 3-3 非接觸式感應供電軌道規劃與設計 30 3-3-1高頻變流器 31 3-3-2感應耦合結構設計 35 3-3-3諧振電路設計 39 3-3-4鎖相迴路 41 3-3-5降壓式轉換器設計 42 第四章 系統硬體規劃 43 4-1 前言 43 4-2 系統電路架構 43 4-3 感應耦合結構製作 44 4-4 初級側電路製作 50 4-4-1全橋變流器製作 50 4-4-2降壓變壓器製作 52 4-4-3鎖相迴路製作 53 4-5 次級側電路製作 56 4-5-1整流濾波電路製作 56 4-5-2降壓式轉換器製作 56 4-6 非接觸式感應供電系統設計流程 58 第五章 系統模擬與實驗結果 61 5-1 前言 61 5-2 系統規格與硬體實作圖 61 5-3 IsSpice模擬 63 5-4 實驗量測結果 66 第六章 結論與未來研究方向 72 6-1 結論 72 6-2 未來研究方向 73 參考文獻 74

    [1]X. Liu and S. Y. R. Hui, “Equivalent circuit modeling of a multilayer planar winding array structure for use in a universal contactless battery charging platform,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 21-29, 2007.
    [2]B. Choi, J. Nho, H. Cha, T. Ahn, and S. Choi, “Design and implementation of low profile contactless battery charger using planar printed circuit board windings as energy transfer device,” IEEE Trans. Ind. Electron., vol. 51, no.1, pp. 140-147, 2004.
    [3]S. C. Tang, S. Y. Hui, and H. S. H. Chung, “Coreless printed circuit board (PCB) transformers with multiple secondary windings for complementary gate drive circuits,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 431-437, 1999.
    [4]Y. Jang and M. M. Jovanovic, “A contactless electrical energy transmission system for portable-telephone battery chargers,” IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 520-527, 2003.
    [5]萬泰麟,非接觸式感應充電技術應用於小家電裝置之研究,國立成功大學電機工程學系碩士論文,2007。
    [6]R. Radys, J. Hall, J. Hayes, and G. Skutt, “Optimizing AC and DC winding losses in ultra-compact, high frequency, high power transformers, ” in Proc. IEEE APEC, 1999, pp. 14-18.
    [7]R. Laouamer, M. Brunello, J. P. Ferrieux, O. Normand, and N. Buchheit, “A multi-resonant converter for non-contact charging with electromagnetic coupling,” in Proc. IECON, 1997, vol. 3, pp. 792-797.
    [8]J. Hayes, J. Hall, M. Eqan, and J. Murphy, “Full-bridre, series-resonant converter supplying the SAE J-1773 electric vehicle inductive charging interface,” in Proc. IEEE PESC, 1996, vol. 2, pp. 1913-1918.
    [9]P. Sergeant and A. Bossche, “Inductive coupler for contactless power transmission,” IEEE Trans. Ind. Appl., vol. 2, no.1 pp.1-7, 2008.
    [10]A. Kawamura, G. Kuroda, and C. Zhu, “Experimental result on contact-less power transmission system for the high-speed trains,” in Proc. IEEE PESC, 2007, pp. 2779-2784.
    [11]S. Raabe, G. A. J. Elliott, G. A. Covic, and J. T. Boys, “A quadrature pickup for inductive power transfer systems,” in Proc. IEEE ICIEA, 2007, pp.68-73.
    [12]J. Lastowiecki and P. Staszewski, “Sliding transformer with long magnetic circuit for contactless electrical energy delivery to mobile receivers,” IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1943-1948, 2006.
    [13]G. A. Covic, G. Elliott, O. H. Stielau, R. M. Green, and J. T. Boys, “The design of a contact-less energy transfer system for a people mover system,” in Proc. PowerCon, 2000, vol. 1, pp. 79-84.
    [14]F. Sato, J. Murakami, H. Matsuki, S. Kikuchi, K. Harakawa, and T. Satoh, “Stable energy transmission to moving loads utilizing new CLPS,” IEEE Trans. Magn., vol. 32, no. 5, pp. 5034-5036, 1996.
    [15]周瑋潔,自走機器人用非接觸式分段激發感應供電軌道之研究,國立成功大學電機工程學系碩士論文,2008。
    [16]杜明育,非接觸式線性感應供電軌道之研究,國立成功大學電機工程學系碩士論文,2007。
    [17]C. S. Wang, O. H. Stielau, and G. A. Covic, “Design consideration for a contactless electric vehicle battery charger,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1308-1314, 2005.
    [18]M. L. G. Kissin, G. A. Covic, and J. T. Boys, “Estimating the output power of flat pickups in complex IPT systems,” in Proc. IEEE PESC, 2008, pp. 604-610.
    [19]Y. X. Xu, J. T. Boys, and G. A. Covic, “Modeling and controller design of ICPT pick-ups,” in Proc. PowerCon, 2002, vol. 3, pp.1602-1606.
    [20]W. Zhou and H. Ma, “Design considerations of compensation topologies in ICPT system,” in Proc. IEEE APEC, 2007, pp.985-990.
    [21]M. Ryu, Y. Park, J. Baek, and H. Cha, “Comparison and analysis of the contactless power transfer system using the parameters of the contactless transformer,” in Proc. PESC, 2006, pp.1-6.
    [22]M. Ryu, Y. Park, J. Baek, and H. Cha, “Analysis of the contactless power transfer system using modeling and analysis of the contactless transformer,” in Proc. IEEE IECON, 2005, pp. 1036-1042.
    [23]林聖國、胡俊宏、楊欣穎、賴嘉輝、陳財榮,線性軌道式非接觸型電力傳輸系統之研究,第七屆台灣電力電子研討會,1402-1406頁,2008。
    [24]C. H. Hu, C. H. Lai, W. R. Yang, C. F. Chang, and T. R. Chen, “Study of a contactless power transmission system,” in Proc. IEEE ISIE, 2008, pp. 293-298.
    [25]徐國鎧、朱柏光、黃淇豪、卓國文、尚立人,可偵測間距與負載之單級高功因非接觸供電系統,第六屆台灣電力電子研討會, 835-840頁,2007。
    [26]Y. H. Chao, J. J. Shieh, C. T. Pan, W. C. Shen, and M. P. Chen, “A primary-side control strategy for series-parallel loosely coupled inductive power transfer systems,” in Proc. IEEE ICIEA, 2007, pp. 2322-2327.
    [27]O. H. Stielau and G. A. Covic, “Design of loosely coupled inductive power transfer systems,” in Proc. PowerCon, 2000, vol. 1, pp. 85-90.
    [28]E. Abel and S. M. Third, “Contactless power transfer – an exercise in topology,” IEEE Trans. Magn., vol. 20, no. 5, pp. 1813-1815, 1984.
    [29]A. W. Green and J. T. Boys, “10kHz inductively coupled power transfer – concept and control,” in Proc. IEE PEVD, 1994, vol. 399, pp. 694-699.
    [30]G. A. J. Elliott, G. A. Covic, D. Kacprzak, and J. T. Boys, “A new concept: asymmetrical pick-ups for inductively coupled power transfer monorail systems,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3389-3391, 2006.
    [31]A. Esser and H. C. Skudelny, “A new approach to power supplies for robot,” IEEE Trans. Ind. Appl., vol. 27, no. 5, pp. 872-875, 1991.
    [32]S. Raabe, J. T. Boys, and G. A. Covic, “A high power coaxial inductive power transfer pickup,” in Proc. IEEE PESC, 2008, pp. 4320-4325.
    [33]D. Kacprzak, G. A. Covic, and J. T. Boys, “An improved magnetic design for inductively coupled power transfer system pickups,” in Proc. IPEC, 2005, vol. 2, pp. 1133-1136.
    [34]E. S. Kim, H. K. Lee, Y. S. Kong, and Y. H. Kim, “Operating characteristics in LCLC resonant converter with a low coupling transformer,” in Proc. IEEE APEC, 2007, pp. 1651-1656.
    [35]張宗明,非接觸電能系統電磁機構研究,重慶大學控制理論與控制工程系碩士論文,2007。
    [36]C. S. Wang, G. A. Covic, and O. H. Stielau, “General stability criterions for zero phase angle controlled loosely coupled inductive power transfer systems,” in Proc. IEEE IECON, 2001, vol. 2, pp. 1049-1054.
    [37]N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics. 2nd ed., Wiley, 2003.
    [38]M. K. Kazimierczuk and D. Czarkowski, Resonant Power Converters. 1st ed., Wiley, 1995.
    [39]Hadi Saadat, Power System Analysis. 2nd ed., McGraw-Hill, 2002.
    [40]C. K. Alexander and M. N. O. Sadiku, Fundamental of Electric Circuit. 2nd ed., McGraw-Hill, 2004.
    [41]C. S. Wang, G. A. Covic, and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer system,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp.148-157, 2004.
    [42]S. C. Rho, S. H. Kim, Y. H. Ahn, and B. Kim, “A study on power transmission system using resonant frequency tracking method and contactless transformer with multiple primary winding,” in Proc. ICEMS, 2007, pp. 1635-1639.
    [43]J. Meins, F. Turki, and R. Czainski, “Phase control of resonant power supply inverters,” in Proc. IEEE EPE, 2005, pp. 1-7.
    [44]H. Miura, S. Arai, F. Sato, H. Matsuki, and T. Sato, “A synchronous rectification using a digital PLL technique for contactless power supplies,” IEEE Trans. Magn., vol. 41, no. 10, pp. 3997-3999, 2004.
    [45]IR2110 Data Sheet, International Rectifier Inc., 2003.
    [46]UC3875 Data Sheet, Texas Instruments Inc., 2004.
    [47]HEF4046B Data Sheet, Philips Semiconductors Inc., 1995.
    [48]TL494 Data Sheet, Motorola Inc., 1995.
    [49]IR2117 Data Sheet, International Rectifier Inc., 2004.

    下載圖示 校內:2011-08-14公開
    校外:2011-08-14公開
    QR CODE