簡易檢索 / 詳目顯示

研究生: 黃炎培
Huang, Yan-Pei
論文名稱: 以SRH-2D模式評估河道整理對輸砂之影響
Study on Sediment Transport after Channel Regulation using SRH-2D model
指導教授: 羅偉誠
Lo, Wei-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 70
中文關鍵詞: 河道整理SRH-2D底床剪應力
外文關鍵詞: river channel regulation, SRH-2D, bed shear stress
相關次數: 點閱:63下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 泥砂於河道淤積會造成流路不穩定及河道窄深化加劇,長期下來會使河道變遷,若淤積的區域為易致災河段,例如河道淤積導致流路改變,進而逼近兩岸造成堤坊或護岸基礎沖刷,容易在豪雨事件後危及保全對象,事後投入搶修則會增加成本。河道整理可調整河槽斷面,及河道的剪應力分布,減緩流路擺盪及深槽下切現象。
    本研究採用二維泥砂及水力學模式(SRH-2D)針對曾文溪大內橋下游至曾文溪橋上游蜿蜒河段建立二維水理及輸砂模式,模式由河道整理前、後數值高程地形資料(DEM)建立,以實際洪水事件模擬驗證模型可靠度。研究中以各重現期2日暴雨所產的洪水歷線作為情境進行模擬,並比較河道整理前、後的水理現象及沖淤變化,探討河道整理的效益。
    研究結果表明:在經過河道整理後的漫灘流量低於河道整理前,可建立濱水帶使小型洪水容易溢淹河道灘地;另外河道整理後的流向將以深槽流向為主,最大流速在10年、20年、50年及100年重現期流量條件下,分別減緩30.0%、29.7%、25.6%及21.6%;底床剪應力經過河道整理後,高剪應力地區皆發生在深槽或深槽銜接灘地處,因深槽已經調整至河道中心因此可以避免河道兩岸受到高剪應力影響造成堤防或護岸的危害,河道整理後剪應力減緩率在45%以上,其中又以100年重現期減緩73.1%為最高;輸砂部分在經河道整理後河道發生沖淤變化的程度降低:沖刷深度的減緩率為26%~49.9%,淤積深度的減緩率在50年以下重現期皆達56%以上,100年重現期則為31.5%。而河道整理後的地形變化皆以淤積現象為主,唯有100年重現期的模擬結果有明顯沖刷發生,顯現河道整理能降低河槽沖淤現象進而減緩河道變遷現象。

    The accumulation of sediments in river channels can lead to unstable flow paths and exacerbate channel narrowing and deepening over the long term, resulting in channel changes. River channel regulation involves adjusting the cross-sectional profile of the riverbed to redirect flow that approaches the banks back to the center of the channel. This helps prevent excessive flow toward one side of the riverbank and erosion of levee foundations. Additionally, it adjusts the shear stress distribution in the channel, slowing down the oscillation and deep incision of the flow.
    This study utilized a two-dimensional sediment and hydraulic model (SRH2D) to create a hydraulic model for the meandering section of the Zengwun River, spanning from downstream of the Da-Nei Bridge to upstream of the Zengwun River Bridge. Digital elevation model (DEM) data before and after river channel regulation were employed to develop and validate the model through simulations of actual flood events. aiming to assess the benefits of channel regulation.
    After river channel regulation aiding small flood control and riparian zone formation. Flow direction shifted towards the deep channel, reducing flow rate with an average velocity reduction of 26.5%. Bed shear stress mainly occurred in the deep channel or its junction with the floodplain, avoiding high shear stress areas near riverbanks that could endanger levees. Sediment accumulation dominated post-regulation, with erosion only in extreme floods, showcasing regulation's positive impact on floodplain protection and flow stability.

    中文摘要 I Abstract II 誌謝 VI 目錄 VII 圖目錄 IX 表目錄 XI 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 本文架構 2 第二章 文獻回顧 3 2.1 動床數值模式 3 2.2 數值模式選擇 10 2.3 SRH-2D應用情 11 2.4 河道變遷相關研究 12 第三章 研究區域及方法 15 3.1 SRH-2D模式介紹 15 3.1.1 模式背景 15 3.1.2 模式理論 16 3.2 研究區域 20 3.2.1 地文資料 20 3.2.2 地形資料 21 3.3 模式建置 22 3.4 模式率定驗證 24 3.4.1 納許效率係數(NSE) 25 3.4.2 水理參數率定及驗證 25 3.4.3 輸砂參數率定及驗證 29 3.5 模擬情境 31 第四章 結果與討論 34 4.1 漫灘流量 34 4.2 流速及流向 36 4.3 底床剪應力模擬成果 41 4.4 動床模擬成果 47 第五章 結論與建議 52 5.1 結論 52 5.2 建議 53 參考文獻 54

    [1]張瑞津(1996),「臺灣西南海岸平原河道變遷之研究」, 第四屆地層研討會-臺灣西南部地區地質研討會大會手冊及論文摘要。
    [2]李鴻源,楊錦釧,葉克家,楊志達,謝慧民(1996),「辮狀河系沖淤模式之發展(四)-NETSTARS模式」,國立台灣大學土木研究所。
    [3]謝德勇(2002),「二維水理、污染傳輸及沉滓運移模式之研發與應用二維水理、污染傳輸及沉滓運移模式之研發與應用」,國立交通大學土木工程學系博士論文。
    [4]廖仲達(2006),「水平二維動床模式於複式河槽洪水位壅高之研究」,國立交通大學土木工程學系碩士論文。
    [5]經濟部水利署水利規劃試驗所 (2007),「美國國家計算水科學及工程中心河道變遷模式之引進及應用研究變遷模式之引進及應用研究」。
    [6]李文獻(2012) ,「二維水理輸砂模式於壩體移除分析應用之探討」,台灣大學土木工程學系碩士論文。
    [7]李岱玲(2012),「CCHE2D模式應用於蜿蜒複式河槽變遷之研究」,國立交通大學土木工程學系碩士論文。
    [8]沈哲緯、林士浩、劉格非、邱昱嘉和江銘祥 (2014),「因應氣候變遷濁水溪流域洪災及崩塌風險評估之硏究」,臺灣災害管理研討會,389-399。
    [9]經濟部水利署水利規劃試驗所(2014),「曾文溪水系曾文溪治理規劃檢討」。
    [10]邱彥瑜、廖仲達、游景雲、石辣鑫和葉克家 (2016),「拆壩對河道影響評估—以大甲溪石岡壩為例」,災害防救科技與管理學刊,5(2),79-97。
    [11]李豐佐、黃聰憲、賴進松、林詠彬和張國鎮(2017),「應用二维水理輸砂模式於橋墩沖刷之模擬分析探討」,農業工程學報,63(4),65-78。
    [12]李豐佐、賴進松、林詠彬、張國鎮、劉小勤、黄振家、林永峻、張正春、林清富和王勝德(2018),「應用動床模式建構橋墩沖刷模擬分析操作系統」,農業工程學報,64(4),58-75。
    [13]經濟部水利署第六河川局(2019),「曾文溪河川環境管理計畫」。
    [14]李依宸(2021),「應用河道穩定指標探討深槽演變之研究」,台灣大學土木工程學系碩士論文。
    [15]李豐佐、黄茂松、劉政其、宋德仁、劉桂南和闕蓓德(2021),「應用二維數值模式分析攔河堰型式影響河道防洪及輸砂之研究」,農業工程學報,67(2)。
    [16]Chiu, Y.-J., H.-Y. Lee, T-L. Wang, J. Yu, Y-T. Lin and Y. Yuan. ,2019. Modeling sediment yields and stream stability due to sediment-related disaster in Shihmen.Reservoir watershed in Taiwan., Water, 11(2), 332.
    [17]David R. Legate, Gregory J. McCabe Jr., 1999. Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation, Water Resources Research, 35(1), 233-241.
    [18]Demirdzic, I. ,2020. Finite volumes vs finite elements. There is a choice., Coupled systems mechanics, 9(1), 5-28.
    [19]Downs, P.W., Dusterhoff, S.R., Sears, W.A., 2013. Reach-scale channel sensitivity to multiple human activities and natural events: Lower Santa Clara River, California, USA. Geomorphology, 189, 121-134.
    [20]Fallah, N., C. Bailey, M. Cross and G. Taylor ,2000.Comparison of finite element and finite volume methods application in geometrically nonlinear stress analysis.,Applied Mathematical Modelling, 24(7), 439-455.
    [21]Frisani, A. and Y. A. Hassan ,2015. On the immersed boundary method: Finite element versus finite volume approach. Computers & Fluids, 121, 51-67.
    [22]Gregory, K.J., 2006. The human role in changing river channels. Geomorphology, 79(3-4), 172-191.
    [23]Hooke, J.M., 2006. Human impacts on fluvial systems in the Mediterranean region. Geomorphology, 79(3-4), 311-335.
    [24]Kondolf, G.M., 1997. Hungry water: Effects of dams and gravel mining on river channels. Environmental Management, 21(4), 533-551.
    [25]Kondolf, G.M., 1994. Geomorphic and environmental - effects of instream gravel mining. Landsc. Urban Plan., 28(2-3), 225-243.
    [26]Lane, E.W., 1955. The importance of fluvial morphology in hydraulic engineering. Proceedings of the American Society of Civil Engineers, 81, 1-17.
    [27]Lai, Y.G. , 2008. SRH-2D Theory and User’s Manual version 2, Technical Report, Technical Service Center, Bureau of Reclamation, Denver, CO. 97 pages.
    [28]Lai, Y.G., Greimann, B.P. and Wu K. ,2011. Soft Bedrock Erosion Modeling with a Two Dimensional Depth-Averaged Model,J. Hydraulic Engineering, 137(8). 804-814.
    [29]Lai, Y.G. , 2020. SRH-2D User’s Manual: Sediment Transport and Mobile-Bed Modeling.U.S. Department of the Interior.
    [30]Liebault, F., Piegay, H., 2002. Causes of 20th century channel narrowing in mountain and piedmont rivers of southeastern France. Earth Surface Processes and Landforms, 27(4), 425-444.
    [31]M. Hanif Chaudhry,2008, Open-Channel Flow.
    [32]Nash, J.E., Sutcliffe, J.V. ,1970. River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10(3),282-290
    [33]Reid, L.M., 1993. Research and cumulative watershed effects. General Technical Report PSW-GTR-141, Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture, Albany, CA.
    [34]Schumm, S.A., 1979. Geomorphic thresholds - Concept and its applications. Trans. Inst. Br. Geogr., 4(4), 485-515.
    [35]Su, H. T., G. J. Y. You and C. C. Chu., 2020.Using two-dimensional modeling to evaluate strategies of sediment reduction and evacuation for Nanshi river under Guishan dam operations., River Research and Applications, 36(10), 2063-2077.
    [36]Surian, N., Rinaldi, M., 2003. Morphological response to river engineering and management in alluvial channels in Italy. Geomorphology, 50(4), 307-326.
    [37]Wang, H.W., B.-S. Tsai, C. Hwang, G.W. Chen and W. C. Kuo.,2020. Efficiency of the drawdown flushing and partition desilting of a reservoir in Taiwan., Water, 12(8), 2166.
    [38]Wu, K., K.-C. Yeh and Y. G. Lai., 2019.A combined field and numerical modeling study to assess the longitudinal channel slope evolution in a mixed alluvial and soft bedrock stream. Water, 11(4), 735.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE