簡易檢索 / 詳目顯示

研究生: 陳仁禮
Chen, Ren-Li
論文名稱: 應用於無線通訊系統之低功率電流導向式數位類比轉換器之設計
Design of Low-Power Current-Steering Digital-to-Analog Converters for Wireless Communication Applications
指導教授: 張順志
Chang, Soon-Jyh
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 101
中文關鍵詞: 電流導向式數位類比轉換器超寬頻
外文關鍵詞: Current-Steering, DAC, UWB
相關次數: 點閱:137下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一些電路設計技巧來有效降低無線通訊系統中之電流導向式數位類比轉換器之功率消耗。此外,一個新型的複合式電流源單元也被提出,使系統單晶片中之電流導向式數位類比轉換器能擁有更多的功能以減少系統整合之成本和挑戰。因此,三個概念驗證之試製晶片被呈現出來驗證所提出之電路技巧。透過對所設計晶片之實際下線和量測驗證,證明所提出之電路技巧可以有效降低功率消耗,且這些晶片可以滿足並整合於無線通訊系統之應用,尤其非常適合超寬頻無線通訊系通之應用。本論文所提出之驗證晶片和電路技巧及晶片量測成果將簡述如下:
    第一個驗證晶片為五位元1.35 GS/s 數位類比轉換器。此設計使用三位元溫度計編碼和兩位元二進位權重編碼之分段式架構來取得對電路複雜度和差分線性誤差之妥協。此外,此轉換器使用雙載子電流源單元來降低功率消耗並且維持系統所需之輸出振幅。此設計更提出一個突波抑制電路來減少時脈饋入效應所造成之雜訊。此轉換器使用標準0.18-um 1P6M互補式金屬氧化物半導體製程驗證,所佔據之晶片面積為0.19平方毫米。量測結果顯示此電路之積分非線性誤差和差分非線性誤差分別為0.04及0.05最低有效位元,且當電路操作在1.35 GS/s下,整個奈奎斯頻帶的無雜訊動態範圍皆大於30分貝,並且此電路總共只消耗9.7 毫瓦之功率。
    第二個驗證晶片為六位元2.7 GS/s 數位類比轉換器。此設計使用二位元溫度計編碼和四位元二進位權重編碼之分段式架構來取得對電流源電晶體面積和溫度計碼解碼器速度之妥協。此設計並提出虛擬溫度計碼之解碼器架構來提升數位類比轉換器之動態效能。此外,此設計使用雙載子電流源單元和鎖存電路時脈延遲技巧來分別減少類比和數位部分之功率消耗。此設計並提出一個面積緊密的突波抑制電路來簡化傳統突波抑制電路之設計和面積。此數位類比轉換器使用標準0.13-um 1P8M互補式金屬氧化物半導體製程驗證,所佔據之晶片面積為0.0585平方毫米。量測結果顯示此電路之積分非線性誤差和差分非線性誤差分別為0.11及0.09最低有效位元,且當電路操作在2.7 GS/s下,整個奈奎斯頻帶之無雜訊動態範圍皆大於36分貝。此電路在輸出接近奈奎斯頻率時,總共消耗5.4 毫瓦之功率,且品質因素只有31 fJ/轉換步驟。
    第三個驗證晶片主要提出一個具有N型,P型和雙載子電流源單元特性之複合式電流源單元,並且基於此單元實現一個具有高操作速度和輸出軌到軌振幅的數位類比轉換器。因此,此轉換器可以滿足通訊及軌到軌電壓源之應用。透過適當切換所提出之電流源和連接到外部的增益控制電阻,此轉換器在供應電壓為1.2伏特下,可以提供間距大約6.4 毫伏之電壓源訊號。此轉換器使用低功率90-nm 1P9M互補式金屬氧化物半導體製程驗證,所佔據的晶片面積為0.045平方毫米。當電路操作在3 GS/s下,整個奈奎斯頻帶之無雜訊動態範圍皆大於36分貝,在輸出接近奈奎斯頻率時,總共只消耗8.32 毫瓦之功率。

    This dissertation proposes several circuit design techniques for current-steering digital-to-analog converters (DACs) on wireless communication applications to lower the power consumption. Moreover, a compound current cell is also proposed to make current-steering DACs in a system-on-a-chip (SoC) have more functionality for reducing the integration challenges and cost. Hence, three proof-of-concept prototypes are presented to demonstrate these techniques. According to the measurement results of the prototypes, the proposed techniques have good power efficiency and the prototypes can meet wireless communication applications, especially on ultra-wideband (UWB) applications. The prototypes and chip measurement results are depicted as follows:
    The first one uses a “3 (thermometer)  2 (binary)” segmented structure for reaching a compromise between the circuit complexity and the differential nonlinearity (DNL) error. In addition, we employ bipolar current source cells in this prototype to cut the power consumption while maintaining the same output voltage swing. Moreover, a de-glitch latch is presented to reduce the clock feedthrough from the pass transistors. This prototype was implemented in a standard 0.18-m 1P6M CMOS technology with the active area of 0.19 mm2. The measured integral nonlinearity (INL) and DNL are less than 0.04 and 0.05 least significant bit (LSB), respectively. The measured spurious-free dynamic range (SFDR) is above 30 dB over the complete Nyquist band at the sampling frequency of 1.35 GHz. The power consumption of this DAC is 9.7 mW.
    The second prototype is a 6-bit 2.7-GS/s DAC. In this prototype, a “2 (thermometer)  4 (binary)” segmented architecture is chosen to make a compromise between the current source cell’s area and the operating speed of the thermometer decoder. In addition, the proposed pseudo-thermometer structure improves the DAC’s dynamic performance. The bipolar current source cell and latch clock delay technique are employed to reduce the power consumption in analog and digital parts, respectively. Moreover, the compact de-glitch latch simplifies the conventional latch design and layout. This DAC was implemented in a standard 0.13-m 1P8M CMOS technology with the active area of 0.0585 mm2. The measured DNL and INL are less than 0.09 and 0.11 LSB, respectively. The measured SFDR is more than 36 dB over the Nyquist frequency at the sampling frequency of 2.7 GHz. The DAC consumes 5.4 mW for a near-Nyquist sinusoidal output at 2.7 GS/s, resulting in a better figure of merit of 31 fJ/conversion-step.
    In the third one, a compound current cell, with the properties of N-type, P-type, and bipolar ones, is proposed and utilized in a current-steering DAC to satisfy the application of rail-to-rail voltage sources. Additionally, a DAC with the cells also has a high speed fashion. Therefore, the presented DAC with the cells meets both communication and rail-to-rail voltage-source applications. Moreover, the effective output voltage step size is improved by appropriately switching these cells and connecting one of gain control resisters, resulting in a about 6.4-mV step size in a 1.2-V supply. Furthermore, this DAC was implemented in a standard low-power 90-nm 1P9M CMOS technology with the active area of 0.045 mm2. The measured SFDR is more than 36 dB over the Nyquist frequency at 3 GS/s, and the DAC consumes 8.32 mW for a near-Nyquist sinusoidal output at the sampling rate of 3 GS/s.

    List of Tables XI List of Figures XII Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 8 1.3 Organization 10 Chapter 2 Background of UWB and Power Analysis of Current Source Cells 12 2.1 Background 12 2.2 MB-OFDM and DS-CDMA UWB Technologies 17 2.3 Power Analysis of Current Source Cells 20 Chapter 3 5-bit 1.35-GS/s DAC 24 3.1 Preamble 24 3.2 Architecture 25 3.3 DAC Building Blocks 28 3.3.1 Digital Circuits 28 3.3.2 De-Glitch Latch 28 3.3.3 Current Source Cell 30 3.4 Layout Considerations 31 3.5 Measurement Results 33 3.6 Summary 37 Chapter 4 6-bit 2.7-GS/s DAC 38 4.1 Preamble 38 4.2 Architecture 40 4.3 Low-Power Building Blocks 48 4.3.1 Current Source Cell 49 4.3.2 Latch Clock Delay Technique 50 4.3.3 Compact De-Glitch Latch 52 4.4 Layout Considerations 55 4.5 Measurement Results 57 4.6 Summary 62 Chapter 5 Compound Current Cell for DACs 64 5.1 Preamble 64 5.2 Conventional Current Cells 67 5.2.1 N-Type Current Cell 67 5.2.2 P-Type Current Cell 67 5.2.3 Bipolar Current Cell 68 5.3 Proposed Compound Current Cell 69 5.3.1 Communication Application 70 5.3.2 Rail-to-Rail Voltage-Source Application 72 5.4 Architecture 74 5.4.1 Communication Application 75 5.4.2 Rail-to-Rail Voltage-Source Application 76 5.5 Design Considerations 77 5.6 Measurement Results 79 5.6.1 Communication Application 80 5.6.2 Rail-to-Rail Voltage-Source Application 84 5.7 Summary 87 Chapter 6 Conclusion and Future Work 88 6.1 Conclusion 88 6.2 Future Work 90 References 92 Publication List 100 Biography 101

    [1] T. Miki et al., “An 80MHz 8-bit CMOS D/A converter,” IEEE J. Solid-State Circuits, vol. 21, pp. 983-988, Dec. 1986.
    [2] S.-Y. Chin and C.-Y. Wu, “A 10-b 125-MHz CMOS digital-to-analog converter with threshold-voltage compensated current sources,” IEEE J. Solid-State Circuits, vol. 29, pp. 1374-1380, Dec. 1994.
    [3] A. Cremonesi, F. Maloberti, and G. Polito, “A 100-MHz CMOS DAC for video-graphic systems,” IEEE J. Solid-State Circuits, vol. 24, pp. 635-639, June 1989.
    [4] Y. Nakamura, T. Miki, A. Maeda, H. Kondoh, and N. Yazawa, “A 10-b 70-MS/s CMOS D/A converter,” IEEE J. Solid State Circuits, vol. 26, pp. 637-642, April 1991.
    [5] J. Fournier and P. Senn, “A 130 MHz 8-bit CMOS video DAC for HDTV applications,” IEEE J. Solid-State Circuits, vol. 26, pp. 1073-1077, July 1991.
    [6] Y. Xu and H. Min, “A low-power video 10-bit CMOS D/A converter using modified look-ahead circuit,” IEEE Trans. Consum. Electron., vol. 45, pp. 295-298, May 1999.
    [7] C. Bastiaansen, D. Groeneveld, H. Schouwenaars, and H. Termeer, “A 10-b 40-MHz 0.8-m CMOS current-output D/A converter,” IEEE J. Solid-State Circuits, vol. 26, pp. 917-921, July 1991.
    [8] H. Kohno et al., “A 350-MS/s 3.3-V 8-bit CMOS D/A converter using a delayed driving scheme,” in Proc. IEEE Cust. Int. Circuits Conf. (CICC), May 1995, pp. 10.5.1-10.5.4.
    [9] B. Schafferer and R. Adams, “A 3V CMOS 400mW 14b 1.4G/s DAC for multi-carrier application,” in ISSCC Dig. Tech. Papers, Feb. 2004, pp. 360-361.
    [10] G. Engel, S. Kuo, and S. Rose, “A 14b 3/6GHz current-steering RF DAC in 0.18m CMOS with 66dB ACLR at 2.9GHz,” in ISSCC Dig. Tech Papers, Feb. 2012, pp. 458-459.
    [11] C.-H. Lin and K. Bult, “A 10-b, 500-MSample/s CMOS DAC in 0.6mm2,” IEEE J. Solid-State Circuits, vol. 33, pp. 1948-1958, Dec. 1998.
    [12] M.-J. Choe, K.-H. Baek, M. Teshome, “A 1.6-GS/s 12-bit return-to-zero GaAs RF DAC for multiple Nyquist operation,” IEEE J. Solid-State Circuits, vol. 40, pp. 2456-2468, Dec. 2005.
    [13] Y. Tang et al., “A 14 bit 200MS/s DAC with SFDR >78 dBc, IM3 <-83 dBc and NSD <-163 dBm/Hz across the whole Nyquist band enabled by dynamic-mismatch mapping,” IEEE J. Solid-State Circuits, vol. 46, pp. 1371-1381, Jun. 2011.
    [14] K. R. Lakshmikumar, R. A. Hadaway, and M. A. Copland, “Characterization and modeling of mismatch in MOS transistors for precision analog design,” IEEE J. Solid-State Circuits, vol. SC-21, pp. 1057-1066, Dec. 1986.
    [15] M. J. M. Pelgrom, A. C. J. Duinmaiher, and A. P. G. Welbers, “Matching properties of MOS transistors,” IEEE J. Solid-State Circuits, vol. 24, pp. 1433-1440, Oct. 1989.
    [16] A. Van den Bosch, M. A. F. Borremans, M. S. J. Steyaert, and W. Sansen, “A 10-bit 1-GSample/s Nyquist current-steering CMOS D/A converter,” IEEE J. Solid-State Circuits, vol. 36, pp. 315-324, Mar. 2001.
    [17] A. Van den Bosch, M. Borremans, M. Steyaert, and W. Sansen, “A 12b 500MSample/s current steering CMOS D/A converter,” in ISSCC Dig. Tech. Papers, Feb. 2001, pp. 366-367.
    [18] G. A. M. Van der Plas, J. Vandenbussche, and W. Sansen, “A 14-bit intrinsic accuracy Q2 random walk CMOS DAC,” IEEE J. Solid-State Circuits, vol. 34, pp. 1708-1718, Dec.1999.
    [19] D. W. J. Groeneveld, H. J. Schouwenaars, H. A. H. Termeer, and C. A. A. Bastiaansen, “A self-calibration technique for monolithic high-resolution D/A converters,” IEEE J. Solid-State Circuits, vol. 24, pp. 1517-1522, Dec. 1989.
    [20] A. R. Bugeja, B. S. Song, P. L. Rakers, and S. F. Gillig, “A 14-b, 100-MS/s CMOS DAC designed for spectral performance,” IEEE, J. Solid State Circuits, vol. 34, pp. 1719-1732, Dec. 1999.
    [21] A. R. Bugeja and B. S. Song, “A self-trimming 14-b 100-MS/s CMOS DAC,” IEEE J. Solid-State Circuits, vol. 35, pp. 1841-1852, Dec. 2000.
    [22] M. P. Tiilikainen, “A 14-bit 1.8-V 20-mW 1-mm2 CMOS DAC,” IEEE J. Solid State Circuits, vol. 36, pp. 1144-1147, July 2001.
    [23] Y. Cong and R. L. Geiger, “A 1.5-V 14-bit 100-MS/s self-calibrated DAC,” IEEE J. Solid-State Circuits, vol. 38, pp. 2051-2060, Dec 2003.
    [24] J. Hyde, T. Humes, C. Diorio, M. Thomas, and M. Figueroa, “A floating-gate trimmed, 14-bit 250 Ms/s Digital-to-analog converter in standard 0.25mm CMOS,” in Symp. VLSI Circuits Dig. Tech. Papers, June 2002, pp. 328-331.
    [25] J. Hyde, T. Humes, C. Diorio, M. Thomas, and M. Figueroa, “A 300-MS/s 14-bit digital-to-analog converter in logic CMOS,” IEEE J. Solid-State Circuits, vol. 38, pp. 734-740, May 2003.
    [26] D. A. Mercer, “Low-power approaches to high-speed current-steering digital-to-analog converters in 0.18-m CMOS,” IEEE J. Solid-State Circuits, vol. 42, pp. 1688-1698, Aug. 2007.
    [27] K. P. S. Rafeeque and V. Vasudevan, “A new technique fro on-chip error estimation and reconfiguration of current-steering digital-to-analog converters” IEEE Trans. Circuits Syst. , Reg. Papers, vol. 52, pp. 2348-2357, Nov. 2005.
    [28] T. Chen, P. Geens, G. Van der Plas, W. Dehaene, and G. Gielen, “A 14-bit 130-MHz CMOS current-steering DAC with adjustable INL,” in Proc. 30th European Solid-State Circuits Conf., Sept. 2004, pp. 167-170.
    [29] T. Chen and G. G. E. Gielen, “A 14-bit 200-MHz current-steering DAC with switching-sequence post-adjustment calibration,” IEEE J. Solid-State Circuits, vol. 42, pp. 2386-2394, Nov. 2007.
    [30] D.-H. Lee, Y.-H. Lin, and T.-H. Kuo, “Nyquist-rate current-steering digital-to-analog converters with random multiple data-weighted averaging technique and QN rotated walk switching scheme,” IEEE Trans, Circuits Syst. II, Exp. Briefs, vol. 53, pp. 1264-1268, Nov. 2006.
    [31] K. L. Chan and I. Galton, “A 14b 100MS/s DAC with fully segmented dynamic element matching,” in ISSCC Dig. Tech Papers, Feb. 2006, pp. 582-583.
    [32] K. L. Chan and I. Galton, “Dynamic element matching to prevent nonlinear distortion from pulse-shape mismatches in high-resolution DACs,” IEEE J. Solid-State Circuits, vol. 43, pp. 2067-2078, Sept. 2008.
    [33] W.-T. Lin and T.-H. Kuo, “A compact dynamic-performance-improved current-steering DAC with random rotation-based binary-weighted selection,” IEEE J. Solid-State Circuits, vol. 47, pp. 444-453, Feb. 2012.
    [34] T. Chen and G. Gielen, “The analysis and improvement of a current-steering DACs dynamic SFDR-I: the cell-dependent delay differences,” IEEE Trans. Circuits Syst. , Reg. Papers, vol. 53. pp. 3–15, Jan. 2006.
    [35] T. Chen and G. Gielen, “The analysis and improvement of a current-steering DACs dynamic SFDR-II: the output-dependent delay differences,” IEEE Trans. Circuits Syst. , Reg. Papers, vol. 54. pp. 268–279, Feb. 2007.
    [36] P. Palmers and M. S. J. Steyaert, “A 10-bit 1.6-GS/s 27-mW current-steering D/A converter with 550-MHz 54-dB SFDR bandwidth in 130-nm CMOS,” IEEE Trans. Circuits Syst. , Reg. Papers, vol. 57. pp. 2870–2879, Nov. 2010.
    [37] M. Clara, W. Klatzer, B. Seger, A. D. Giandomenico, and L. Gori, “A 1.5V 200MS/s 13b 25mW DAC with randomized nested background calibration in 0.13m CMOS,” in ISSCC Dig. Tech Papers, Feb. 2007, pp. 250-251.
    [38] K. O’Sullivan, C. Gorman, M. Hennessy, and V. Callaghan, “A 12-bit 320-MSample/s current-steering CMOS D/A converter in 0.44 mm2,” IEEE J. Solid-State Circuits, vol. 39, pp. 1064-1072, July 2004.
    [39] S. Park, G. Kim, S. C. Park, and W. Kim, “A digital-to-analog converter based on differential-quad switching,” IEEE J. Solid-State Circuits, vol. 37, pp. 1335-1338, Oct. 2004.
    [40] W.-H. Tseng, C.-W. Fan, and J.-T. Wu, “A 12b 1.25GS/s DAC in 90nm CMOS with >70dB SFDR up to 500MHz,” in ISSCC Dig. Tech. Papers, Feb. 2011, pp. 192–193.
    [41] W.-H. Tseng, J.-T. Wu, and Y.-C. Chu, “A CMOS 8-Bit 1.6GS/s DAC with digital random return-to-zero,” IEEE Trans. Circuits Syst. I, Exp. Briefs, vol. 58. pp. 1–5, Jan. 2011.
    [42] W.-T. Lin and T.-H. Kuo,“A 12b 1.6GS/s 40mW DAC in 40nm CMOS with >70dB SFDR over entire Nyquist bandwidth,” in ISSCC Dig. Tech. Papers, Feb. 2013, pp. 474-475.
    [43] A. Van den Bosch, M. Steyaert, and W. Sansen, “SFDR-bandwidth limitations for high-speed high-resolution current-steering CMOS D/A converters,” in Proc. IEEE Int. Conf. Electronics, Circuits and Systems, Sept. 1999, pp. 1193-1196.
    [44] S. Luschas and H. S. Lee, “Output impedance requirements for DACs,” in Proc. 2003 Int. Symp. Circuits and Syst., May 2003, pp. 861-864.
    [45] C-H. Lin et al., “A 12b 2.9 GS/s DAC with IM3<-60dBc beyond 1GHz in 65nm CMOS,” IEEE J. Solid-State Circuits, vol. 44, pp. 3285-3293, Dec. 2009.
    [46] X. Wu, P. Palmeras, and M. S. J. Steyaert, “A 130nm CMOS 6-bit full Nyquist 3GS/s DAC,” IEEE J. Solid-State Circuits, vol. 43, pp. 2396-2403, Nov. 2008.
    [47] Federal Communications Commission (FCC), “Revision of part 15 of the commission's rules regarding ultra-wideband transmission systems,” First Report and Order, ET Docket 98-153, FCC 02-48; Adopted: February 2002.
    [48] J. J. Jung, B. H. Park, S. S. Choi, S. I. Lim, and S. Kim, “A 6-bit 2.704 GSPS DAC for DS-CDMA UWB,” in Proc. IEEE Asia Pacific Conf. Circuits and Syst., Dec. 2006, pp. 347-350.
    [49] K. Farzan and D. A. Johns, “A CMOS 10-Gb/s power-efficient 4-PAM transmitter,” IEEE J. Solid-State Circuits, vol. 39, pp. 529-532, Mar. 2004.
    [50] K. Farzan and D. A. Johns, “A power-efficient architecture for high-speed D/A converters,” in Proc. 2003 Int. Symp. Circuits and Syst., May 2003, pp. I897–I890.
    [51] C. K. Ho and H. C. Hong, “A 6-GS/s, 6-bit at-speed testable ADC and DAC pair in 0.13m CMOS,” in Proc. IEEE Int. Symposia on VLSI-DAT, Apr. 2009, pp. 207-210.
    [52] M. R. Hassanzadeh, J. Talebzadeh, and O. Shoaei, “A high-speed, current-steering digital-to-analog converter in 0.6-m CMOS,” in Proc. IEEE Int. Conf. Electrion. Circuits syst., Sept. 2002, pp. 9-12.
    [53] S. M. Lin, D. U. Li, and W. T. Chen, “1 V 1.25 GS/s 8 mW D/A converters for MB-OFDM UWB transceivers,” in Proc. IEEE Int. Conf. Ultra-Wideband, Sept. 2007, pp. 453-456.
    [54] J. Jung, K. U. Baek, S. I. Lim, S. Jim, and S. M. Kang, “Design of a 6 bit 1.25 GS/s DAC for WPAN,” in Proc. 2008 Int. Symp. Circuits and Syst., May 2008, pp. 2262–2265.
    [55] B. C. Kim, M.-H. Cho, Y.-G. Kim, and J.-K. Kwon, “A 1 V 6-bit 2.4 GS/s Nyquist CMOS DAC for UWB systems,” in Proc. IEEE Int. Microwave Symp., May 2010, pp. 912-915.
    [56] J. Deveugele and M. S. J. Steyaert, “A 10-bit 250-MS/s binary-weighted current steering DAC,” IEEE J. Solid-State Circuits, vol. 41, pp. 320-329, Feb. 2006.
    [57] X. Wu and M. Steyaert, “A 90nm CMOS 5-bit 2GS/s DAC for UWB transceivers,” in Proc. IEEE Int. Conf. Ultra-Wideband, Sept. 2010, pp. 1-4.
    [58] J. L. González and E. Alarcón, “Distortion and clock-jitter in high speed CMOS switched current segmented digital-to-analog converters”, in Proc. 2001 Int. Symp. Circuits and Syst., June 2001, pp. 512-514.
    [59] Y. Cong and R. L. Geiger, “Formulation of INL and DNL yield estimation in current-steering D/A converters,” in Proc. 2002 Int. Symp. Circuits and Syst., May 2002, pp. 149-152.
    [60] M. Kosunen, J. Vankka, I. Teikari, and K. Halonen, “DNL and INL yield models for a current-steering D/A converter,” in Proc. 2003 Int. Symp. Circuits and Syst., May 2003, pp. 969-972.
    [61] S. Wand, D. S. Ha, and S. S. Choi, “Design of a 6-bit 5.4-Gsamples/s CMOS D/A converter for DS-CDMA UWB transceivers,” in Proc. IEEE Int. Conf. Ultra-Wideband, Sept. 2005, pp.333-338.
    [62] R.-L. Chen and S.-J. Chang, “A 5-bit 1.35-GSPS DAC for UWB transceivers,” in Proc. IEEE Int. Conf. Ultra-Wideband, Sept. 2009, pp.175-179.
    [63] R.-L. Chen, H.-W. Ting, and S.-J. Chang, “Six-bit 2.7-GS/s 5.4-mW Nyquist complementary metal-oxide semiconductor digital-to-analogue converter for ultra-wideband transceivers,” IET Circuits Devices Syst., vol. 6, pp. 95-102, Mar. 2012.
    [64] http://www.radio-electronics.com/info/wireless/uwb/ultra-wideband-technology.php
    [65] S. A. Ghorashi, B. Allen, M. Ghavami, and A. H. Aghvami, “An overview of MB-UWB OFDM,” in Proc. of IEE Seminar on Ultra Wideband Commun. Technol. and Syst. Design, July 2004, pp. 107-110.
    [66] R. C. Qiu, H. Liu, M. and X. Shen, “Ultra-wideband for multiple access communications,” IEEE Commun. Mag., vol. 43, pp. 80-87, Feb. 2005.
    [67] Y. G. Kwon, S. H. Lee, Y. D. Jeon, and J. K. Kwon, “A 6b 1.4GS/s 11.9mW 0.11mm2 65nm CMOS DAC with a 2-D INL bounded switching scheme,” in Proc. IEEE Int. SoC Design Conf., Nov. 2010, pp. 198-200.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE