| 研究生: |
高嘉萱 Kao, Chia-Hsuan |
|---|---|
| 論文名稱: |
氮化硼光催化處理全氟烷基化合物及能耗評估之研究 A study on boron nitride photocatalysis treatments of perfluoroalkyl substances and the evaluation of energy consumption |
| 指導教授: |
侯文哲
Hou, Wen-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 全氟與多氟烷基物質 、光催化 、氮化硼 、每階能耗 、表觀量子產率 |
| 外文關鍵詞: | Per- and polyfluoroalkyl substances (PFAS), Photocatalysis, Boron nitride, Electrical energy per order (EEO), Apparent quantum yield (AQY) |
| 相關次數: | 點閱:23 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全氟與多氟烷基物質(Per- and polyfluoroalkyl substances, PFAS)是一類含C-F鍵的人工合成化合物,由於其抗污、防水、防油及高熱穩定等特性,被廣泛的應用在民生用品及工業產品中。研究指出,PFAS具有持久性及生物累積性,一旦被釋放到環境中,將會對生態系統和人類健康構成潛在威脅。近年來國內飲用水監測報告發現部分水樣中PFAS濃度已接近或超過即將實施的法規標準,顯示在源頭控管與處理技術方面仍有加強空間。
在眾多處理技術中,光催化技術因具備可在常溫常壓條件下運行、無需大量化學添加劑等優勢而日益受到關注。本研究利用酸洗活化後之自製氮化硼(BN_AA)作為光催化劑,針對代表性PFAS進行降解及分析其轉化產物。首先,在全氟辛烷磺酸(Perfluorooctane sulfonic acid, PFOS)降解產物分析中,首次鑑定出兩種推測為全氟磺酸(Perfluoroalkane sulfonic acids, PFSA)羥基化的中間產物,分別為C8H2F16O4S與C8H3F15O5S,另外針對全氟辛酸(Perfluorooctanoic acid, PFOA)探討其在不同水體條件下的降解表現。在放流水與模擬鹽水中,BN_AA對PFOA展現良好降解能力,可於 30至45分鐘內達到完全降解,中間產物的部分呈階段性生成短碳鏈全氟化物,3小時後除氟率超過60 %,顯示良好的降解反應。
此外,本研究亦於純水條件下計算PFOA、PFOS與六氟環氧丙烯二聚酸(Hexafluoropropylene oxide dimer acid, HFPO-DA亦稱GenX)的每階能耗(Electrical energy per order , EEO)與表觀量子產率(Apparent quantum yield, AQY),並與相關光催化系統文獻數據進行比較。結果顯示,BN_AA系統在處理三種PFAS時的EEO數值相對較低,展現出良好的能源效率;而AQY值亦在三者中皆高於文獻數值,突顯出BN_AA在光子利用效率上的潛在優勢與應用潛力。
Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic compounds containing strong carbon-fluorine (C-F) bonds. Due to their excellent stain resistance, water repellency, oil resistance, and high thermal stability, PFAS have been widely used in consumer products and industrial applications. However, studies have shown that PFAS are persistent and bioaccumulative, and once released into the environment, they pose potential threats to ecosystems and human health. In recent years, drinking water monitoring reports in Taiwan have revealed that PFAS concentrations in some samples have approached or exceeded upcoming regulatory limits, highlighting the need to strengthen source control and treatment technologies.
Among various treatment technologies, photocatalysis has attracted increasing attention due to its advantages of operating under ambient temperature and pressure conditions without the need for large amounts of chemical additives. In this study, an acid-activated self-synthesized boron nitride (BN_AA) was used as the photocatalyst to investigate the degradation of representative PFAS and their transformation products.
Firstly, in the degradation product analysis of perfluorooctane sulfonic acid (PFOS), two previously unreported hydroxylated perfluoroalkane sulfonic acid (PFSA) intermediates, C8H2F16O4S and C8H3F15O5S, were identified. Additionally, the degradation performance of perfluorooctanoic acid (PFOA), under different water matrix conditions. In both wastewater effluent and simulated brine water, BN_AA exhibited effective degradation capability for PFOA, achieving complete removal within 30 to 45 minutes. The intermediate products were sequentially formed as short-chain perfluorinated compounds. Defluorination rates exceeded 60 % after 3 hours, indicating partial mineralization during the reaction process.
Furthermore, this study also assessed the energy efficiency of BN_AA in degrading PFOA, PFOS, and hexafluoropropylene oxide dimer acid (HFPO-DA, i.e., GenX) under deionized water conditions, by calculating their electrical energy per order (EEO) and apparent quantum yield (AQY), and comparing the results with the literature. The results showed that BN_AA achieved relatively low EEO values across all three PFAS compounds, demonstrating excellent energy efficiency. Additionally, the AQY values obtained were higher than those reported in existing studies, highlighting the potential advantage of BN_AA in photon utilization efficiency and its potential for practical applications.
(1) Liu, F.; Guan, X.; Xiao, F. Photodegradation of Per- and Polyfluoroalkyl Substances in Water: A Review of Fundamentals and Applications. J. Hazard. Mater. 2022, 439, 129580. https://doi.org/10.1016/j.jhazmat.2022.129580.
(2) Wang, Z.; DeWitt, J. C.; Higgins, C. P.; Cousins, I. T. A Never-Ending Story of Per- and Polyfluoroalkyl Substances (PFASs)? Environ. Sci. Technol. 2017, 51 (5), 2508–2518. https://doi.org/10.1021/acs.est.6b04806.
(3) Banayan Esfahani, E.; Dixit, F.; Asadi Zeidabadi, F.; Johnson, M. R.; Mayilswamy, N.; Kandasubramanian, B.; Mohseni, M. Ion Exchange and Advanced Oxidation/Reduction Processes for per- and Polyfluoroalkyl Substances Treatment: A Mini-Review. Curr. Opin. Chem. Eng. 2023, 42, 100953. https://doi.org/10.1016/j.coche.2023.100953.
(4) Banayan Esfahani, E.; Dixit, F.; Asadi Zeidabadi, F.; Johnson, M. R.; Mayilswamy, N.; Kandasubramanian, B.; Mohseni, M. Ion Exchange and Advanced Oxidation/Reduction Processes for per- and Polyfluoroalkyl Substances Treatment: A Mini-Review. Curr. Opin. Chem. Eng. 2023, 42, 100953. https://doi.org/10.1016/j.coche.2023.100953.
(5) Tshangana, C. S.; Nhlengethwa, S. T.; Glass, S.; Denison, S.; Kuvarega, A. T.; Nkambule, T. T. I.; Mamba, B. B.; Alvarez, P. J. J.; Muleja, A. A. Technology Status to Treat PFAS-Contaminated Water and Limiting Factors for Their Effective Full-Scale Application. Npj Clean Water 2025, 8 (1), 1–30. https://doi.org/10.1038/s41545-025-00457-3.
(6) Horst, J.; McDonough, J.; Ross, I.; Dickson, M.; Miles, J.; Hurst, J.; Storch, P. Water Treatment Technologies for PFAS: The Next Generation. Groundw. Monit. Remediat. 2018, 38 (2), 13–23. https://doi.org/10.1111/gwmr.12281.
(7) Miklos, D. B.; Remy, C.; Jekel, M.; Linden, K. G.; Drewes, J. E.; Hübner, U. Evaluation of Advanced Oxidation Processes for Water and Wastewater Treatment – A Critical Review. Water Res. 2018, 139, 118–131. https://doi.org/10.1016/j.watres.2018.03.042.
(8) Ricka, R.; Přibyl, M.; Kočí, K. Apparent Quantum Yield – Key Role of Spatial Distribution of Irradiation. Appl. Catal. Gen. 2023, 658, 119166. https://doi.org/10.1016/j.apcata.2023.119166.
(9) Habib, Z.; Song, M.; Ikram, S.; Zahra, Z. Overview of Per- and Polyfluoroalkyl Substances (PFAS), Their Applications, Sources, and Potential Impacts on Human Health. Pollutants 2024, 4 (1), 136–152. https://doi.org/10.3390/pollutants4010009.
(10) Interim Guidance on the Destruction and Disposal of Perfluoroalkyl and Polyfluoroalkyl Substances and Materials Containing Perfluoroalkyl and Polyfluoroalkyl Substances--2024. 2024.
(11) Wen, Y.; Rentería-Gómez, Á.; Day, G. S.; Smith, M. F.; Yan, T.-H.; Ozdemir, R. O. K.; Gutierrez, O.; Sharma, V. K.; Ma, X.; Zhou, H.-C. Integrated Photocatalytic Reduction and Oxidation of Perfluorooctanoic Acid by Metal–Organic Frameworks: Key Insights into the Degradation Mechanisms. J. Am. Chem. Soc. 2022, 144 (26), 11840–11850. https://doi.org/10.1021/jacs.2c04341.
(12) Hogue, C. US EPA deems two GenX PFAS chemicals more toxic than PFOA. Chemical & Engineering News. https://cen.acs.org/environment/persistent-pollutants/US-EPA-deems-two-GenX-PFAS-chemicals-more-toxic-than-PFOA/99/i40 (accessed 2025-07-29).
(13) Evich, M. G.; Davis, M. J. B.; McCord, J. P.; Acrey, B.; Awkerman, J. A.; Knappe, D. R. U.; Lindstrom, A. B.; Speth, T. F.; Tebes-Stevens, C.; Strynar, M. J.; Wang, Z.; Weber, E. J.; Henderson, W. M.; Washington, J. W. Per- and Polyfluoroalkyl Substances in the Environment. Science 2022, 375 (6580), eabg9065. https://doi.org/10.1126/science.abg9065.
(14) DeWitt, J. C.; Glüge, J.; Cousins, I. T.; Goldenman, G.; Herzke, D.; Lohmann, R.; Miller, M.; Ng, C. A.; Patton, S.; Trier, X.; Vierke, L.; Wang, Z.; Adu-Kumi, S.; Balan, S.; Buser, A. M.; Fletcher, T.; Haug, L. S.; Heggelund, A.; Huang, J.; Kaserzon, S.; Leonel, J.; Sheriff, I.; Shi, Y.-L.; Valsecchi, S.; Scheringer, M. Zürich II Statement on Per- and Polyfluoroalkyl Substances (PFASs): Scientific and Regulatory Needs. Environ. Sci. Technol. Lett. 2024, 11 (8), 786–797. https://doi.org/10.1021/acs.estlett.4c00147.
(15) Fact Sheets old – PFAS — Per- and Polyfluoroalkyl Substances. https://pfas-1.itrcweb.org/fact-sheets/?gad_source=1&gad_campaignid=15499818841&gbraid=0AAAAABMAAvCC38A1p4Kjr8ON_pYYlCIml&gclid=Cj0KCQjw2tHABhCiARIsANZzDWp1FS9a5NlqBN3BXh8XbMlHKwR6zuMGK5c257-WuvCa58RsTkVeF2YaAqOrEALw_wcB (accessed 2025-05-02).
(16) Boyer, T. H.; Fang, Y.; Ellis, A.; Dietz, R.; Choi, Y. J.; Schaefer, C. E.; Higgins, C. P.; Strathmann, T. J. Anion Exchange Resin Removal of Per- and Polyfluoroalkyl Substances (PFAS) from Impacted Water: A Critical Review. Water Res. 2021, 200, 117244. https://doi.org/10.1016/j.watres.2021.117244.
(17) Crone, B. C.; Speth, T. F.; Wahman, D. G.; Smith, S. J.; Abulikemu, G.; Kleiner, E. J.; Pressman, J. G. Occurrence of Per- and Polyfluoroalkyl Substances (PFAS) in Source Water and Their Treatment in Drinking Water. Crit. Rev. Environ. Sci. Technol. 2019, 49 (24), 2359–2396. https://doi.org/10.1080/10643389.2019.1614848.
(18) Ross, I.; McDonough, J.; Miles, J.; Storch, P.; Thelakkat Kochunarayanan, P.; Kalve, E.; Hurst, J.; S. Dasgupta, S.; Burdick, J. A Review of Emerging Technologies for Remediation of PFASs. Remediat. J. 2018, 28 (2), 101–126. https://doi.org/10.1002/rem.21553.
(19) Degradation and Removal Methods for Perfluoroalkyl and Polyfluoroalkyl Substances in Water. https://www.researchgate.net/publication/308491366_Degradation_and_Removal_Methods_for_Perfluoroalkyl_and_Polyfluoroalkyl_Substances_in_Water (accessed 2025-06-05).
(20) Zeng, C.; Atkinson, A.; Sharma, N.; Ashani, H.; Hjelmstad, A.; Venkatesh, K.; Westerhoff, P. Removing Per‐ and Polyfluoroalkyl Substances from Groundwaters Using Activated Carbon and Ion Exchange Resin Packed Columns. AWWA Water Sci. 2020, 2 (1), e1172. https://doi.org/10.1002/aws2.1172.
(21) Yu, Q.; Zhang, R.; Deng, S.; Huang, J.; Yu, G. Sorption of Perfluorooctane Sulfonate and Perfluorooctanoate on Activated Carbons and Resin: Kinetic and Isotherm Study. Water Res. 2009, 43 (4), 1150–1158. https://doi.org/10.1016/j.watres.2008.12.001.
(22) Zaggia, A.; Conte, L.; Falletti, L.; Fant, M.; Chiorboli, A. Use of Strong Anion Exchange Resins for the Removal of Perfluoroalkylated Substances from Contaminated Drinking Water in Batch and Continuous Pilot Plants. Water Res. 2016, 91, 137–146. https://doi.org/10.1016/j.watres.2015.12.039.
(23) Deng, S.; Yu, Q.; Huang, J.; Yu, G. Removal of Perfluorooctane Sulfonate from Wastewater by Anion Exchange Resins: Effects of Resin Properties and Solution Chemistry. Water Res. 2010, 44 (18), 5188–5195. https://doi.org/10.1016/j.watres.2010.06.038.
(24) Bhapkar, A. R.; Bhame, S. A Review on ZnO and Its Modifications for Photocatalytic Degradation of Prominent Textile Effluents: Synthesis, Mechanisms, and Future Directions. J. Environ. Chem. Eng. 2024, 12 (3), 112553. https://doi.org/10.1016/j.jece.2024.112553.
(25) Qanbarzadeh, M.; DiGiacomo, L.; Bouteh, E.; Alhamdan, E. Z.; Mason, M. M.; Wang, B.; Wong, M. S.; Cates, E. L. An Ultraviolet/Boron Nitride Photocatalytic Process Efficiently Degrades Poly-/Perfluoroalkyl Substances in Complex Water Matrices. Environ. Sci. Technol. Lett. 2023, 10 (8), 705–710. https://doi.org/10.1021/acs.estlett.3c00363.
(26) Huang, D.; Yin, L.; Niu, J. Photoinduced Hydrodefluorination Mechanisms of Perfluorooctanoic Acid by the SiC/Graphene Catalyst. Environ. Sci. Technol. 2016, 50 (11), 5857–5863. https://doi.org/10.1021/acs.est.6b00652.
(27) Chen, Z.; Chen, W.; Liao, G.; Li, X.; Wang, J.; Tang, Y.; Li, L. Flexible Construct of N Vacancies and Hydrophobic Sites on G-C3N4 by F Doping and Their Contribution to PFOA Degradation in Photocatalytic Ozonation. J. Hazard. Mater. 2022, 428, 128222. https://doi.org/10.1016/j.jhazmat.2022.128222.
(28) Solar photocatalytic and surface enhancement of ZnO/rGO nanocomposite: Degradation of perfluorooctanoic acid and dye. https://www.researchgate.net/publication/316783693_Solar_photocatalytic_and_surface_enhancement_of_ZnOrGO_nanocomposite_Degradation_of_perfluorooctanoic_acid_and_dye (accessed 2025-05-27).
(29) Song, C.; Chen, P.; Wang, C.; Zhu, L. Photodegradation of Perfluorooctanoic Acid by Synthesized TiO2-MWCNT Composites under 365nm UV Irradiation. Chemosphere 2012, 86 (8), 853–859. https://doi.org/10.1016/j.chemosphere.2011.11.034.
(30) Single-Atom Pt Catalyst for Effective C–F Bond Activation via Hydrodefluorination. https://eurekamag.com/research/087/579/087579201.php?srsltid=AfmBOoqc3V6vRVKvvj-p5tlXPJsxXbI2UFqzLVy0Pcxl0NDjJu3C99aw (accessed 2025-05-27).
(31) Efficient Photocatalytic PFOA Degradation over Boron Nitride - Arizona State University. https://asu.elsevierpure.com/en/publications/efficient-photocatalytic-pfoa-degradation-over-boron-nitride (accessed 2025-05-27).
(32) Li, X.; Zhang, P.; Jin, L.; Shao, T.; Li, Z.; Cao, J. Efficient Photocatalytic Decomposition of Perfluorooctanoic Acid by Indium Oxide and Its Mechanism. Environ. Sci. Technol. 2012, 46 (10), 5528–5534. https://doi.org/10.1021/es204279u.
(33) Huang, J.; Wang, X.; Pan, Z.; Li, X.; Ling, Y.; Li, L. Efficient Degradation of Perfluorooctanoic Acid (PFOA) by Photocatalytic Ozonation. Chem. Eng. J. 2016, 296, 329–334. https://doi.org/10.1016/j.cej.2016.03.116.
(34) Wu, D.; Li, X.; Tang, Y.; Lu, P.; Chen, W.; Xu, X.; Li, L. Mechanism Insight of PFOA Degradation by ZnO Assisted-Photocatalytic Ozonation: Efficiency and Intermediates. Chemosphere 2017, 180, 247–252. https://doi.org/10.1016/j.chemosphere.2017.03.127.
(35) Rivero, M. J.; Ribao, P.; Gomez-Ruiz, B.; Urtiaga, A.; Ortiz, I. Comparative Performance of TiO2-rGO Photocatalyst in the Degradation of Dichloroacetic and Perfluorooctanoic Acids. Sep. Purif. Technol. 2020, 240, 116637. https://doi.org/10.1016/j.seppur.2020.116637.
(36) Weon, S.; Suh, M.-J.; Chu, C.; Huang, D.; Stavitski, E.; Kim, J.-H. Site-Selective Loading of Single-Atom Pt on TiO2 for Photocatalytic Oxidation and Reductive Hydrodefluorination. ACS EST Eng. 2021, 1 (3), 512–522. https://doi.org/10.1021/acsestengg.0c00210.
(37) Wang, B.; Chen, Y.; Samba, J.; Heck, K.; Huang, X.; Lee, J.; Metz, J.; Bhati, M.; Fortner, J.; Li, Q.; Westerhoff, P.; Alvarez, P.; Senftle, T. P.; Wong, M. S. Surface Hydrophobicity of Boron Nitride Promotes PFOA Photocatalytic Degradation. Chem. Eng. J. 2024, 483 (149134). https://doi.org/10.1016/j.cej.2024.149134.
(38) Li, Q.; Zhang, K.; Che, X.; Gao, T.; Wang, S.; Ni, G. Preparation of BN Nanoparticle with High Sintering Activity and Its Formation Mechanism. Molecules 2024, 29 (15), 3458. https://doi.org/10.3390/molecules29153458.
(39) Wang, J.; Xu, T.; Wang, W.; Zhang, Z. Miracle in “White”:Hexagonal Boron Nitride. Small n/a (n/a), 2400489. https://doi.org/10.1002/smll.202400489.
(40) Innocenzi, P.; Stagi, L. From Defects to Photoluminescence in H-BN 2D and 0D Nanostructures. Acc. Mater. Res. 2024, 5 (4), 413–425. https://doi.org/10.1021/accountsmr.3c00242.
(41) Ji, X.; Guo, Y.; Hua, S.; Li, H.; Zhang, S. Interaction-Determined Sensitization Photodegradation of Dye Complexes by Boron Nitride under Visible Light Irradiation: Experimental and Theoretical Studies. New J. Chem. 2020, 44 (22), 9238–9247. https://doi.org/10.1039/D0NJ01387K.
(42) Novel Ag3PO4/Boron-Carbon-Nitrogen Photocatalyst for Highly Efficient Degradation of Organic Pollutants under Visible-Light Irradiation. J. Environ. Manage. 2021, 292, 112763. https://doi.org/10.1016/j.jenvman.2021.112763.
(43) Titanium Oxide Improves Boron Nitride Photocatalytic Degradation of Perfluorooctanoic Acid. Chem. Eng. J. 2022, 448, 137735. https://doi.org/10.1016/j.cej.2022.137735.
(44) Mohamed, H. H.; Alqahtani, S.; Alsunaidi, Z. H. A. Sulphur Doped Boron Carbon Nitride as Novel Metal Free Nanomaterials for Photocatalytic Degradation of Organic Pollutants and H2 Production. J. Alloys Compd. 2025, 1018, 179236. https://doi.org/10.1016/j.jallcom.2025.179236.
(45) Xu, H.; Wu, Z.; Ding, M.; Gao, X. Microwave-Assisted Synthesis of Flower-like BN/BiOCl Composites for Photocatalytic Cr(VI) Reduction upon Visible-Light Irradiation. Mater. Des. 2017, 114, 129–138. https://doi.org/10.1016/j.matdes.2016.10.057.
(46) Huyen, N. T.; Suong Suong, T. A.; Thanh, C. T.; Van Tu, N.; Trinh, P. V.; Tan, T. V.; Quynh Xuan, L. T.; Thang, B. H.; Van Hau, T.; Tuan, D.; Long, P. D.; Minh, P. N.; Abe, H.; Van Chuc, N. Efficient Photocatalytic Degradation of Methylene Blue Using 3D Urchin-like TiO 2 @rGO-hBN Architecture. RSC Adv. 2025, 15 (14), 10754–10762. https://doi.org/10.1039/D5RA00845J.
(47) Chen, L.; Navya, B. S.; Dong, C.-D. Construction of MoS2/BN Nanohybrids with Enhanced Photocatalytic Performance for RhB and TC Degradation. J. Phys. Chem. Solids 2024, 193, 112170. https://doi.org/10.1016/j.jpcs.2024.112170.
(48) Glass, S.; Kannan, H.; Bangala, J.; Chen, Y.; Metz, J.; Mowzoon-Mogharrabi, R.; Gao, G.; Meiyazhagan, A. K.; Wong, M. S.; Ajayan, P. M.; Senftle, T. P.; Alvarez, P. J. J. Iron Doping of hBN Enhances the Photocatalytic Oxidative Defluorination of Perfluorooctanoic Acid. ACS Appl. Mater. Interfaces 2025, 17 (15), 22803–22811. https://doi.org/10.1021/acsami.5c01963.
(49) Lee, Y.-C.; Liu, Y.-H.; Lin, J.-C.; Hu, C.-Y.; Kuo, J.; Lin, Y.-C.; Lo, S.-L. UV/Sulfite Reduction Kinetics of Perfluorobutane Sulfonic Acid (PFBS), Perfluorooctane Sulfonic Acid (PFOS) and Perfluorooctanoic Acid (PFOA). Sep. Purif. Technol. 2024, 347, 127505. https://doi.org/10.1016/j.seppur.2024.127505.
(50) Cui, J.; Gao, P.; Deng, Y. Destruction of Per- and Polyfluoroalkyl Substances (PFAS) with Advanced Reduction Processes (ARPs): A Critical Review. Environ. Sci. Technol. 2020, 54 (7), 3752–3766. https://doi.org/10.1021/acs.est.9b05565.
(51) Liu, Z.; Chen, Z.; Gao, J.; Yu, Y.; Men, Y.; Gu, C.; Liu, J. Accelerated Degradation of Perfluorosulfonates and Perfluorocarboxylates by UV/Sulfite + Iodide: Reaction Mechanisms and System Efficiencies. Environ. Sci. Technol. 2022, 56 (6), 3699–3709. https://doi.org/10.1021/acs.est.1c07608.
(52) Ren, Z.; Zhang, R.; Xu, X.; Li, Y.; Wang, N.; Leiviskä, T. Sorption/Desorption and Degradation of Long- and Short-Chain PFAS by Anion Exchange Resin and UV/Sulfite System. Environ. Pollut. 2024, 361, 124847. https://doi.org/10.1016/j.envpol.2024.124847.
(53) Daneshvar, N.; Aleboyeh, A.; Khataee, A. R. The Evaluation of Electrical Energy per Order (EEo) for Photooxidative Decolorization of Four Textile Dye Solutions by the Kinetic Model. Chemosphere 2005, 59 (6), 761–767. https://doi.org/10.1016/j.chemosphere.2004.11.012.
(54) Bolton, J. R.; Bircher, K. G.; Tumas, W.; Tolman, C. A. Figures-of-Merit for the Technical Development and Application of Advanced Oxidation Technologies for Both Electric- and Solar-Driven Systems (IUPAC Technical Report). Pure Appl. Chem. 2001, 73 (4), 627–637. https://doi.org/10.1351/pac200173040627.
(55) Sustainable and energy-efficient photocatalytic degradation of textile dye assisted by ecofriendly synthesized silver nanoparticles | Scientific Reports. https://www.nature.com/articles/s41598-023-29507-x (accessed 2025-05-03).
(56) Guo, Y.; Wang, R.; Wang, P.; Rao, L.; Wang, C. Dredged-Sediment-Promoted Synthesis of Boron-Nitride-Based Floating Photocatalyst with Photodegradation of Neutral Red under Ultraviolet-Light Irradiation. ACS Appl. Mater. Interfaces 2018, 10 (5), 4640–4651. https://doi.org/10.1021/acsami.7b15638.
(57) Hou, W.-C.; Jafvert, C. T. Photochemistry of Aqueous C60 Clusters: Evidence of 1O2 Formation and Its Role in Mediating C60 Phototransformation. Environ. Sci. Technol. 2009, 43 (14), 5257–5262. https://doi.org/10.1021/es900624s.
(58) Schymanski, E. L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H. P.; Hollender, J. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ. Sci. Technol. 2014, 48 (4), 2097–2098. https://doi.org/10.1021/es5002105.
(59) Röhler, L.; Schlabach, M.; Haglund, P.; Breivik, K.; Kallenborn, R.; Bohlin-Nizzetto, P. Non-Target and Suspect Characterisation of Organic Contaminants in Arctic Air – Part 2: Application of a New Tool for Identification and Prioritisation of Chemicals of Emerging Arctic Concern in Air. Atmospheric Chem. Phys. 2020, 20 (14), 9031–9049. https://doi.org/10.5194/acp-20-9031-2020.
(60) Kisch, H.; Bahnemann, D. Best Practice in Photocatalysis: Comparing Rates or Apparent Quantum Yields? J. Phys. Chem. Lett. 2015, 6 (10), 1907–1910. https://doi.org/10.1021/acs.jpclett.5b00521.
(61) Barzen-Hanson, K. A.; Roberts, S. C.; Choyke, S.; Oetjen, K.; McAlees, A.; Riddell, N.; McCrindle, R.; Ferguson, P. L.; Higgins, C. P.; Field, J. A. Discovery of 40 Classes of Per- and Polyfluoroalkyl Substances in Historical Aqueous Film-Forming Foams (AFFFs) and AFFF-Impacted Groundwater. Environ. Sci. Technol. 2017, 51 (4), 2047–2057. https://doi.org/10.1021/acs.est.6b05843.
(62) Olatunde, O. C.; Kuvarega, A. T.; Onwudiwe, D. C. Photo Enhanced Degradation of Polyfluoroalkyl and Perfluoroalkyl Substances. Heliyon 2020, 6 (12), e05614. https://doi.org/10.1016/j.heliyon.2020.e05614.
(63) Duan, X.; Wang, W.; Wang, Q.; Sui, X.; Li, N.; Chang, L. Electrocatalytic Degradation of Perfluoroocatane Sulfonate (PFOS) on a 3D Graphene-Lead Dioxide (3DG-PbO2) Composite Anode: Electrode Characterization, Degradation Mechanism and Toxicity. Chemosphere 2020, 260, 127587. https://doi.org/10.1016/j.chemosphere.2020.127587.
(64) Yang, J.-S.; Lai, W. W.-P.; Lin, A. Y.-C. New Insight into PFOS Transformation Pathways and the Associated Competitive Inhibition with Other Perfluoroalkyl Acids via Photoelectrochemical Processes Using GOTiO2 Film Photoelectrodes. Water Res. 2021, 207, 117805. https://doi.org/10.1016/j.watres.2021.117805.
(65) Ming-Han Yang. Photocatalysis of Aqueous Perfluoroalkyl Substances over Boron Nitride: Mechanism and Intermediate Product Studies. (National Cheng Kung University, 2024).
(66) Pin-Fei Chu. A Study of the Synthesis of Non-Metallic Boron Nitride Photocatalyst and the Acid Activation Effect in Enhancing the Reactivity of Perfluorooctanoic Acid Photodegradation in Water. (National Cheng Kung University, 2022).
(67) Tang, C. Y.; Fu, Q. S.; Robertson, A. P.; Criddle, C. S.; Leckie, J. O. Use of Reverse Osmosis Membranes to Remove Perfluorooctane Sulfonate (PFOS) from Semiconductor Wastewater. Environ. Sci. Technol. 2006, 40 (23), 7343–7349. https://doi.org/10.1021/es060831q.
(68) Dillert, R.; Bahnemann, D.; Hidaka, H. Light-Induced Degradation of Perfluorocarboxylic Acids in the Presence of Titanium Dioxide. Chemosphere 2007, 67 (4), 785–792. https://doi.org/10.1016/j.chemosphere.2006.10.023.
(69) Lawless, D.; Serpone, N.; Meisel, D. Role of Hydroxyl Radicals and Trapped Holes in Photocatalysis. A Pulse Radiolysis Study. J. Phys. Chem. 1991, 95 (13), 5166–5170. https://doi.org/10.1021/j100166a047.
(70) Liao, C.-Hsiang.; Gurol, M. D. Chemical Oxidation by Photolytic Decomposition of Hydrogen Peroxide. Environ. Sci. Technol. 1995, 29 (12), 3007–3014. https://doi.org/10.1021/es00012a018.
(71) Miklos, D. B.; Remy, C.; Jekel, M.; Linden, K. G.; Drewes, J. E.; Hübner, U. Evaluation of Advanced Oxidation Processes for Water and Wastewater Treatment – A Critical Review. Water Res. 2018, 139, 118–131. https://doi.org/10.1016/j.watres.2018.03.042.
(72) Energy Evaluation of Electron Beam Treatment of Perfluoroalkyl Substances in Water: A Critical Review. https://www.researchgate.net/publication/351051794_Energy_Evaluation_of_Electron_Beam_Treatment_of_Perfluoroalkyl_Substances_in_Water_A_Critical_Review (accessed 2025-06-09).
(73) Energy-Efficient Electrochemical Oxidation of Perfluoroalkyl Substances Using a Ti 4 O 7 Reactive Electrochemical Membrane Anode. https://www.researchgate.net/publication/334662052_Energy-Efficient_Electrochemical_Oxidation_of_Perfluoroalkyl_Substances_Using_a_Ti_4_O_7_Reactive_Electrochemical_Membrane_Anode (accessed 2025-06-09).
(74) Bentel, M. J.; Liu, Z.; Yu, Y.; Gao, J.; Men, Y.; Liu, J. Enhanced Degradation of Perfluorocarboxylic Acids (PFCAs) by UV/Sulfite Treatment: Reaction Mechanisms and System Efficiencies at pH 12. Environ. Sci. Technol. Lett. 2020, 7 (5), 351–357. https://doi.org/10.1021/acs.estlett.0c00236.
(75) Singh, R. K.; Multari, N.; Nau-Hix, C.; Anderson, R. H.; Richardson, S. D.; Holsen, T. M.; Mededovic Thagard, S. Rapid Removal of Poly- and Perfluorinated Compounds from Investigation-Derived Waste (IDW) in a Pilot-Scale Plasma Reactor. Environ. Sci. Technol. 2019, 53 (19), 11375–11382. https://doi.org/10.1021/acs.est.9b02964.
(76) Javed, H.; Lyu, C.; Sun, R.; Zhang, D.; Alvarez, P. J. J. Discerning the Inefficacy of Hydroxyl Radicals during Perfluorooctanoic Acid Degradation. Chemosphere 2020, 247, 125883. https://doi.org/10.1016/j.chemosphere.2020.125883.
(77) Zhang, C.; Tang, T.; Knappe, D. R. U. Oxidation of Per- and Polyfluoroalkyl Ether Acids and Other Per- and Polyfluoroalkyl Substances by Sulfate and Hydroxyl Radicals: Kinetic Insights from Experiments and Models. Environ. Sci. Technol. 2023, 57 (47), 18970–18980. https://doi.org/10.1021/acs.est.3c00947.
(78) Li, Z.; Zhang, P.; Shao, T.; Li, X. In2O3 Nanoporous Nanosphere: A Highly Efficient Photocatalyst for Decomposition of Perfluorooctanoic Acid. Appl. Catal. B Environ. 2012, 125, 350–357. https://doi.org/10.1016/j.apcatb.2012.06.017.
(79) Li, X.; Zhang, P.; Jin, L.; Shao, T.; Li, Z.; Cao, J. Efficient Photocatalytic Decomposition of Perfluorooctanoic Acid by Indium Oxide and Its Mechanism. Environ. Sci. Technol. 2012, 46 (10), 5528–5534. https://doi.org/10.1021/es204279u.
(80) Yuan, Y.; Feng, L.; He, X.; Liu, X.; Xie, N.; Ai, Z.; Zhang, L.; Gong, J. Efficient Removal of PFOA with an In2O3/Persulfate System under Solar Light via the Combined Process of Surface Radicals and Photogenerated Holes. J. Hazard. Mater. 2022, 423, 127176. https://doi.org/10.1016/j.jhazmat.2021.127176.
(81) Li, Z.; Zhang, P.; Li, J.; Shao, T.; Jin, L. Synthesis of In2O3-Graphene Composites and Their Photocatalytic Performance towards Perfluorooctanoic Acid Decomposition. J. Photochem. Photobiol. Chem. 2013, 271, 111–116. https://doi.org/10.1016/j.jphotochem.2013.08.012.
(82) Liu, J.; Guo, C.; Wu, N.; Li, C.; Qu, R.; Wang, Z.; Jin, R.; Qiao, Y.; He, Z.; Lu, J.; Feng, X.; Zhang, Y.; Wang, A.; Gao, J. Efficient Photocatalytic Degradation of PFOA in N-Doped In2O3/Simulated Sunlight Irradiation System and Its Mechanism. Chem. Eng. J. 2022, 435, 134627. https://doi.org/10.1016/j.cej.2022.134627.
(83) Liu, X.; Xu, B.; Duan, X.; Hao, Q.; Wei, W.; Wang, S.; Ni, B.-J. Facile Preparation of Hydrophilic In2O3 Nanospheres and Rods with Improved Performances for Photocatalytic Degradation of PFOA. Environ. Sci. Nano 2021, 8 (4), 1010–1018. https://doi.org/10.1039/D0EN01216E.
(84) Xu, C.; Qiu, P.; Chen, H.; Jiang, F. Platinum Modified Indium Oxide Nanorods with Enhanced Photocatalytic Activity on Degradation of Perfluorooctanoic Acid (PFOA). J. Taiwan Inst. Chem. Eng. 2017, 80, 761–768. https://doi.org/10.1016/j.jtice.2017.09.018.
(85) Zhao, B.; Lv, M.; Zhou, L. Photocatalytic Degradation of Perfluorooctanoic Acid with β-Ga2O3 in Anoxic Aqueous Solution. J. Environ. Sci. 2012, 24 (4), 774–780. https://doi.org/10.1016/S1001-0742(11)60818-8.
(86) Shao, T.; Zhang, P.; Jin, L.; Li, Z. Photocatalytic Decomposition of Perfluorooctanoic Acid in Pure Water and Sewage Water by Nanostructured Gallium Oxide. Appl. Catal. B Environ. 2013, 142–143, 654–661. https://doi.org/10.1016/j.apcatb.2013.05.074.
(87) Xu, B.; Zhou, J. L.; Altaee, A.; Ahmed, M. B.; Johir, M. A. H.; Ren, J.; Li, X. Improved Photocatalysis of Perfluorooctanoic Acid in Water and Wastewater by Ga2O3/UV System Assisted by Peroxymonosulfate. Chemosphere 2020, 239, 124722. https://doi.org/10.1016/j.chemosphere.2019.124722.
(88) Huang, J.; Wang, X.; Pan, Z.; Li, X.; Ling, Y.; Li, L. Efficient Degradation of Perfluorooctanoic Acid (PFOA) by Photocatalytic Ozonation. Chem. Eng. J. 2016, 296, 329–334. https://doi.org/10.1016/j.cej.2016.03.116.
(89) Xu, B.; Ahmed, M. B.; Zhou, J. L.; Altaee, A. Visible and UV Photocatalysis of Aqueous Perfluorooctanoic Acid by TiO2 and Peroxymonosulfate: Process Kinetics and Mechanistic Insights. Chemosphere 2020, 243, 125366. https://doi.org/10.1016/j.chemosphere.2019.125366.
(90) Gatto, S.; Sansotera, M.; Persico, F.; Gola, M.; Pirola, C.; Panzeri, W.; Navarrini, W.; Bianchi, C. L. Surface Fluorination on TiO2 Catalyst Induced by Photodegradation of Perfluorooctanoic Acid. Catal. Today 2015, 241, 8–14. https://doi.org/10.1016/j.cattod.2014.04.031.
(91) Song, C.; Chen, P.; Wang, C.; Zhu, L. Photodegradation of Perfluorooctanoic Acid by Synthesized TiO2–MWCNT Composites under 365nm UV Irradiation. Chemosphere 2012, 86 (8), 853–859. https://doi.org/10.1016/j.chemosphere.2011.11.034.
(92) Li, M.; Yu, Z.; Liu, Q.; Sun, L.; Huang, W. Photocatalytic Decomposition of Perfluorooctanoic Acid by Noble Metallic Nanoparticles Modified TiO2. Chem. Eng. J. 2016, 286, 232–238. https://doi.org/10.1016/j.cej.2015.10.037.
(93) Chen, M.-J.; Lo, S.-L.; Lee, Y.-C.; Kuo, J.; Wu, C.-H. Decomposition of Perfluorooctanoic Acid by Ultraviolet Light Irradiation with Pb-Modified Titanium Dioxide. J. Hazard. Mater. 2016, 303, 111–118. https://doi.org/10.1016/j.jhazmat.2015.10.011.
(94) Song, H.; Wang, Y.; Ling, Z.; Zu, D.; Li, Z.; Shen, Y.; Li, C. Enhanced Photocatalytic Degradation of Perfluorooctanoic Acid by Ti3C2 MXene-Derived Heterojunction Photocatalyst: Application of Intercalation Strategy in DESs. Sci. Total Environ. 2020, 746, 141009. https://doi.org/10.1016/j.scitotenv.2020.141009.
(95) Gomez-Ruiz, B.; Ribao, P.; Diban, N.; Rivero, M. J.; Ortiz, I.; Urtiaga, A. Photocatalytic Degradation and Mineralization of Perfluorooctanoic Acid (PFOA) Using a Composite TiO2 −rGO Catalyst. J. Hazard. Mater. 2018, 344, 950–957. https://doi.org/10.1016/j.jhazmat.2017.11.048.
(96) Rivero, M. J.; Ribao, P.; Gomez-Ruiz, B.; Urtiaga, A.; Ortiz, I. Comparative Performance of TiO2-rGO Photocatalyst in the Degradation of Dichloroacetic and Perfluorooctanoic Acids. Sep. Purif. Technol. 2020, 240, 116637. https://doi.org/10.1016/j.seppur.2020.116637.
(97) Weon, S.; Suh, M.-J.; Chu, C.; Huang, D.; Stavitski, E.; Kim, J.-H. Site-Selective Loading of Single-Atom Pt on TiO2 for Photocatalytic Oxidation and Reductive Hydrodefluorination. ACS EST Eng. 2021, 1 (3), 512–522. https://doi.org/10.1021/acsestengg.0c00210.
(98) Ong, C. B.; Mohammad, A. W.; Ng, L. Y.; Mahmoudi, E.; Azizkhani, S.; Hayati Hairom, N. H. Solar Photocatalytic and Surface Enhancement of ZnO/rGO Nanocomposite: Degradation of Perfluorooctanoic Acid and Dye. Process Saf. Environ. Prot. 2017, 112, 298–307. https://doi.org/10.1016/j.psep.2017.04.031.
(99) Wu, D.; Li, X.; Tang, Y.; Lu, P.; Chen, W.; Xu, X.; Li, L. Mechanism Insight of PFOA Degradation by ZnO Assisted-Photocatalytic Ozonation: Efficiency and Intermediates. Chemosphere 2017, 180, 247–252. https://doi.org/10.1016/j.chemosphere.2017.03.127.
(100) Huang, D.; Yin, L.; Niu, J. Photoinduced Hydrodefluorination Mechanisms of Perfluorooctanoic Acid by the SiC/Graphene Catalyst. Environ. Sci. Technol. 2016, 50 (11), 5857–5863. https://doi.org/10.1021/acs.est.6b00652.
(101) Huang, D.; de Vera, G. A.; Chu, C.; Zhu, Q.; Stavitski, E.; Mao, J.; Xin, H.; Spies, J. A.; Schmuttenmaer, C. A.; Niu, J.; Haller, G. L.; Kim, J.-H. Single-Atom Pt Catalyst for Effective C–F Bond Activation via Hydrodefluorination. ACS Catal. 2018, 8 (10), 9353–9358. https://doi.org/10.1021/acscatal.8b02660.
(102) Song, Z.; Dong, X.; Wang, N.; Zhu, L.; Luo, Z.; Fang, J.; Xiong, C. Efficient Photocatalytic Defluorination of Perfluorooctanoic Acid over BiOCl Nanosheets via a Hole Direct Oxidation Mechanism. Chem. Eng. J. 2017, 317, 925–934. https://doi.org/10.1016/j.cej.2017.02.126.
(103) Wu, Y.; Hu, Y.; Han, M.; Ouyang, Y.; Xia, L.; Huang, X.; Hu, Z.; Li, C. Mechanism Insights into the Facet-Dependent Photocatalytic Degradation of Perfluorooctanoic Acid on BiOCl Nanosheets. Chem. Eng. J. 2021, 425, 130672. https://doi.org/10.1016/j.cej.2021.130672.
(104) Wang, J.; Cao, C.; Wang, Y.; Wang, Y.; Sun, B.; Zhu, L. In Situ Preparation of p-n BiOI@Bi5O7I Heterojunction for Enhanced PFOA Photocatalytic Degradation under Simulated Solar Light Irradiation. Chem. Eng. J. 2020, 391, 123530. https://doi.org/10.1016/j.cej.2019.123530.
(105) Liao, H.; Zhong, J.; Li, J. Tunable Oxygen Vacancies Facilitated Removal of PFOA and RhB over BiOCl Prepared with Alcohol Ether Sulphate. Appl. Surf. Sci. 2022, 590, 152891. https://doi.org/10.1016/j.apsusc.2022.152891.
(106) Song, Z.; Dong, X.; Fang, J.; Xiong, C.; Wang, N.; Tang, X. Improved Photocatalytic Degradation of Perfluorooctanoic Acid on Oxygen Vacancies-Tunable Bismuth Oxychloride Nanosheets Prepared by a Facile Hydrolysis. J. Hazard. Mater. 2019, 377, 371–380. https://doi.org/10.1016/j.jhazmat.2019.05.084.
(107) Wang, J.; Cao, C.; Zhang, Y.; Zhang, Y.; Zhu, L. Underneath Mechanisms into the Super Effective Degradation of PFOA by BiOF Nanosheets with Tunable Oxygen Vacancies on Exposed (101) Facets. Appl. Catal. B Environ. 2021, 286, 119911. https://doi.org/10.1016/j.apcatb.2021.119911.
(108) Li, T.; Wang, C.; Wang, T.; Zhu, L. Highly Efficient Photocatalytic Degradation toward Perfluorooctanoic Acid by Bromine Doped BiOI with High Exposure of (001) Facet. Appl. Catal. B Environ. 2020, 268, 118442. https://doi.org/10.1016/j.apcatb.2019.118442.
(109) Sahu, S. P.; Qanbarzadeh, M.; Ateia, M.; Torkzadeh, H.; Maroli, A. S.; Cates, E. L. Rapid Degradation and Mineralization of Perfluorooctanoic Acid by a New Petitjeanite Bi3O(OH)(PO4)2 Microparticle Ultraviolet Photocatalyst. Environ. Sci. Technol. Lett. 2018, 5 (8), 533–538. https://doi.org/10.1021/acs.estlett.8b00395.
(110) Qanbarzadeh, M.; Wang, D.; Ateia, M.; Sahu, S. P.; Cates, E. L. Impacts of Reactor Configuration, Degradation Mechanisms, and Water Matrices on Perfluorocarboxylic Acid Treatment Efficiency by the UV/Bi3O(OH)(PO4)2 Photocatalytic Process. ACS EST Eng. 2021, 1 (2), 239–248. https://doi.org/10.1021/acsestengg.0c00086.
(111) Wang, J.; Wang, Y.; Cao, C.; Zhang, Y.; Zhang, Y.; Zhu, L. Decomposition of Highly Persistent Perfluorooctanoic Acid by Hollow Bi/BiOI1-xFx: Synergistic Effects of Surface Plasmon Resonance and Modified Band Structures. J. Hazard. Mater. 2021, 402, 123459. https://doi.org/10.1016/j.jhazmat.2020.123459.
(112) Shang, E.; Li, Y.; Niu, J.; Li, S.; Zhang, G.; Wang, X. Photocatalytic Degradation of Perfluorooctanoic Acid over Pb-BiFeO3/rGO Catalyst: Kinetics and Mechanism. Chemosphere 2018, 211, 34–43. https://doi.org/10.1016/j.chemosphere.2018.07.130.
(113) Duan, L.; Wang, B.; Heck, K.; Guo, S.; Clark, C. A.; Arredondo, J.; Wang, M.; Senftle, T. P.; Westerhoff, P.; Wen, X.; Song, Y.; Wong, M. S. Efficient Photocatalytic PFOA Degradation over Boron Nitride. Environ. Sci. Technol. Lett. 2020, 7 (8), 613–619. https://doi.org/10.1021/acs.estlett.0c00434.
(114) Duan, L.; Wang, B.; Heck, K. N.; Clark, C. A.; Wei, J.; Wang, M.; Metz, J.; Wu, G.; Tsai, A.-L.; Guo, S.; Arredondo, J.; Mohite, A. D.; Senftle, T. P.; Westerhoff, P.; Alvarez, P.; Wen, X.; Song, Y.; Wong, M. S. Titanium Oxide Improves Boron Nitride Photocatalytic Degradation of Perfluorooctanoic Acid. Chem. Eng. J. 2022, 448, 137735. https://doi.org/10.1016/j.cej.2022.137735.
(115) Chen, Z.; Chen, W.; Liao, G.; Li, X.; Wang, J.; Tang, Y.; Li, L. Flexible Construct of N Vacancies and Hydrophobic Sites on G-C3N4 by F Doping and Their Contribution to PFOA Degradation in Photocatalytic Ozonation. J. Hazard. Mater. 2022, 428, 128222. https://doi.org/10.1016/j.jhazmat.2022.128222.
(116) Samuel, M. S.; Shang, M.; Niu, J. Photocatalytic Degradation of Perfluoroalkyl Substances in Water by Using a Duo-Functional Tri-Metallic-Oxide Hybrid Catalyst. Chemosphere 2022, 293, 133568. https://doi.org/10.1016/j.chemosphere.2022.133568.
(117) Tang, H.; Zhang, W.; Meng, Y.; Xia, S. A Direct Z-Scheme Heterojunction with Boosted Transportation of Photogenerated Charge Carriers for Highly Efficient Photodegradation of PFOA: Reaction Kinetics and Mechanism. Appl. Catal. B Environ. 2021, 285, 119851. https://doi.org/10.1016/j.apcatb.2020.119851.
(118) Choong, C. E.; Kim, M.; Lim, J. S.; Hong, Y. J.; Lee, G. J.; Chae, K. H.; Nah, I. W.; Yoon, Y.; Choi, E. H.; Jang, M. Understanding the Synergistic Effect of Hydrated Electron Generation from Argon Plasma Catalysis over Bi2O3/CeO2 for Perfluorooctanoic Acid Dehalogenation: Mechanism and DFT Study. Appl. Catal. B Environ. 2024, 343, 123403. https://doi.org/10.1016/j.apcatb.2023.123403.
(119) Li, M.; Yu, Z.; Liu, Q.; Sun, L.; Huang, W. Photocatalytic Decomposition of Perfluorooctanoic Acid by Noble Metallic Nanoparticles Modified TiO2. Chem. Eng. J. 2016, 286, 232–238. https://doi.org/10.1016/j.cej.2015.10.037.
(120) Wang, J.; Cao, C.; Wang, Y.; Wang, Y.; Sun, B.; Zhu, L. In Situ Preparation of P-n BiOI@Bi5O7I Heterojunction for Enhanced PFOA Photocatalytic Degradation under Simulated Solar Light Irradiation. Chem. Eng. J. 2020, 391, 123530. https://doi.org/10.1016/j.cej.2019.123530.
(121) Guin, J. P.; Sullivan, J. A.; Muldoon, J.; Thampi, K. R. Visible Light Induced Degradation of Perfluorooctanoic Acid Using Iodine Deficient Bismuth Oxyiodide Photocatalyst. J. Hazard. Mater. 2023, 458, 131897. https://doi.org/10.1016/j.jhazmat.2023.131897.
(122) Wang, W.; Chen, Y.; Li, G.; Gu, W.; An, T. Photocatalytic Reductive Defluorination of Perfluorooctanoic Acid in Water under Visible Light Irradiation: The Role of Electron Donor. Environ. Sci. Water Res. Technol. 2020, 6 (6), 1638–1648. https://doi.org/10.1039/D0EW00205D.
(123) Wang, B.; Chen, Y.; Samba, J.; Heck, K.; Huang, X.; Lee, J.; Metz, J.; Bhati, M.; Fortner, J.; Li, Q.; Westerhoff, P.; Alvarez, P.; Senftle, T. P.; Wong, M. S. Surface Hydrophobicity of Boron Nitride Promotes PFOA Photocatalytic Degradation. Chem. Eng. J. 2024, 483, 149134. https://doi.org/10.1016/j.cej.2024.149134.
(124) Qanbarzadeh, M.; DiGiacomo, L.; Bouteh, E.; Alhamdan, E. Z.; Mason, M. M.; Wang, B.; Wong, M. S.; Cates, E. L. An Ultraviolet/Boron Nitride Photocatalytic Process Efficiently Degrades Poly-/Perfluoroalkyl Substances in Complex Water Matrices. Environ. Sci. Technol. Lett. 2023, 10 (8), 705–710. https://doi.org/10.1021/acs.estlett.3c00363.
(125) Zinc oxide@citric acid-modified graphitic carbon nitride nanocomposites for adsorption and photocatalytic degradation of perfluorooctanoic acid | Advanced Composites and Hybrid Materials. https://link.springer.com/article/10.1007/s42114-024-00867-w (accessed 2024-03-24).
(126) Wen, J.; Li, H.; Ottosen, L. D. M.; Lundqvist, J.; Vergeynst, L. Comparison of the Photocatalytic Degradability of PFOA, PFOS and GenX Using Fe-Zeolite in Water. Chemosphere 2023, 344, 140344. https://doi.org/10.1016/j.chemosphere.2023.140344.
(127) Li, H.; Luo, R.; Zhong, J.; Huang, S.; Li, M.; Li, J. In-Situ Construction of h-BN/BiOCl Heterojunctions with Rich Oxygen Vacancies for Rapid Photocatalytic Removal of Typical Contaminants. Colloids Surf. Physicochem. Eng. Asp. 2023, 659, 130756. https://doi.org/10.1016/j.colsurfa.2022.130756.
(128) Liu, X.; Gong, K.; Duan, X.; Wei, W.; Wang, T.; Chen, Z.; Zhang, L.; Ni, B.-J. Photo-Induced Bismuth Single Atoms on TiO2 for Highly Efficient Photocatalytic Defluorination of Perfluorooctanoic Acid: Ionization of the C–F Bond. ACS EST Eng. 2023, 3 (10), 1626–1636. https://doi.org/10.1021/acsestengg.3c00177.
(129) Qian, L.; Zhao, H.; Schierz, A.; Mackenzie, K.; Georgi, A. A Deep Insight into Perfluorooctanoic Acid Photodegradation Using Metal Ion-Exchanged Zeolites. ACS EST Eng. 2024, 4 (3), 748–757. https://doi.org/10.1021/acsestengg.3c00462.
(130) Arana Juve, J.-M.; Baami González, X.; Bai, L.; Xie, Z.; Shang, Y.; Saad, A.; Gonzalez-Olmos, R.; Wong, M. S.; Ateia, M.; Wei, Z. Size-Selective Trapping and Photocatalytic Degradation of PFOA in Fe-Modified Zeolite Frameworks. Appl. Catal. B Environ. Energy 2024, 349, 123885. https://doi.org/10.1016/j.apcatb.2024.123885.
(131) de S. Furtado, R. X.; Sabatini, C. A.; Zaiat, M.; Azevedo, E. B. Perfluorooctane Sulfonic Acid (PFOS) Degradation by Optimized Heterogeneous Photocatalysis (TiO2/UV) Using the Response Surface Methodology (RSM). J. Water Process Eng. 2021, 41, 101986. https://doi.org/10.1016/j.jwpe.2021.101986.
(132) Zhu, Y.; Xu, T.; Zhao, D.; Li, F.; Liu, W.; Wang, B.; An, B. Adsorption and Solid-Phase Photocatalytic Degradation of Perfluorooctane Sulfonate in Water Using Gallium-Doped Carbon-Modified Titanate Nanotubes. Chem. Eng. J. 2021, 421, 129676. https://doi.org/10.1016/j.cej.2021.129676.
(133) Qian, L.; Kopinke, F.-D.; Georgi, A. Photodegradation of Perfluorooctanesulfonic Acid on Fe-Zeolites in Water. Environ. Sci. Technol. 2021, 55 (1), 614–622. https://doi.org/10.1021/acs.est.0c04558.
(134) Duan, L.; Gu, M.; Wang, M.; Liu, L.; Cheng, X.; Huang, J. Mechanism of Z-Scheme BN/BiOI Heterojunction for Efficient Photodegradation of Perfluorooctane Sulfonate (PFOS). Sep. Purif. Technol. 2025, 360, 131229. https://doi.org/10.1016/j.seppur.2024.131229.
(135) Rather, R. A.; Xu, T.; Leary, R. N.; Zhao, D. Aqueous and Solid Phase Photocatalytic Degradation of Perfluorooctane Sulfonate by Carbon- and Fe-Modified Bismuth Oxychloride. Chemosphere 2024, 346, 140585. https://doi.org/10.1016/j.chemosphere.2023.140585.
(136) Boonchata, P.; Boontanon, N.; Jindal, V.; Aung, H. K. Z. Z.; Visvanathan, C.; Fujii, S.; Boontanon, S. K. Photocatalytic Degradation of Perfluorooctane Sulfonic Acid and Perfluorooctanoic Acid Using Titanium Dioxide/Graphene Oxide Nanocomposite Immobilized on Polyvinyl Alcohol Film. Case Stud. Chem. Environ. Eng. 2024, 10, 100862. https://doi.org/10.1016/j.cscee.2024.100862.
(137) Wang, J.; Cao, C.-S.; Wang, J.; Zhang, Y.; Zhu, L. Insights into Highly Efficient Photodegradation of Poly/Perfluoroalkyl Substances by In-MOF/BiOF Heterojunctions: Built-in Electric Field and Strong Surface Adsorption. Appl. Catal. B Environ. 2022, 304, 121013. https://doi.org/10.1016/j.apcatb.2021.121013.
(138) Huang, D.; Yin, L.; Lu, X.; Lin, S.; Niu, Z.; Niu, J. Directional Electron Transfer Mechanisms with Graphene Quantum Dots as the Electron Donor for Photodecomposition of Perfluorooctane Sulfonate. Chem. Eng. J. 2017, 323, 406–414. https://doi.org/10.1016/j.cej.2017.04.124.
(139) Lashuk, B.; Pineda, M.; AbuBakr, S.; Boffito, D.; Yargeau, V. Application of Photocatalytic Ozonation with a WO3/TiO2 Catalyst for PFAS Removal under UVA/Visible Light. Sci. Total Environ. 2022, 843, 157006. https://doi.org/10.1016/j.scitotenv.2022.157006.
(140) Zhu, Y.; Ji, H.; He, K.; Blaney, L.; Xu, T.; Zhao, D. Photocatalytic Degradation of GenX in Water Using a New Adsorptive Photocatalyst. Water Res. 2022, 220, 118650. https://doi.org/10.1016/j.watres.2022.118650.
校內:2030-08-21公開