簡易檢索 / 詳目顯示

研究生: 朱旻峙
Chu, Min-Chih
論文名稱: 鋁合金於真空腔體內之放射率行為實驗研究
Experimental Investigation of Emissivity Behaviors for Aluminum Alloys under High Vacuum
指導教授: 溫昌達
Wen, Chang-Da
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 104
中文關鍵詞: 鋁合金放射率真空腔體
外文關鍵詞: Aluminum Alloys, Emissivity, High Vacuum
相關次數: 點閱:118下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究首先分析鋁合金AL 1100、AL 2024、AL 5083、AL 6061、AL 7005在高真空環境下加熱溫度為600 K、700 K、800 K時之放射率;再與相同的合金和加熱溫度在開放環境下之放射率行為做比較,藉此討論試件有氧化與無氧化對表面放射率的影響;最後探討利用多光譜輻射測溫法搭配一階線性放射率模組去推測鋁合金表面溫度之結果,以了解氧化效應對溫度推測的影響。
    高真空環境之鋁合金放射率分析:(1)為了避開大氣中的水氣與二氧化碳的影響,故波長選取範圍為2.8 µm到4.2 µm,在此波段內此五種鋁合金放射率皆隨波長的增加而逐漸下降;(2)整體而言,鋁合金表面放射率皆隨加熱溫度增加而上升;(3)鋁合金表面放射率不會隨著加熱時間增加而改變;(4)加熱溫度為600 K與700 K時,合金成份對放射率的影響並不大。但是當加熱溫度為800 K時不同合金成份之放射率明顯的差異。
    鋁合金有氧化與無氧化對放射率的影響:(1) 大部份鋁合金有氧化的放射率皆大於無氧化的放射率,除了AL 2024與AL 7005,因為熔化造成表面粗糙度增加及高溫加熱時表面色澤的改變導致無氧化的放射率大於有氧化的放射率。整體而言,有氧化與無氧化之放射率皆隨著加熱溫度增加而上升;(2) 鋁合金於開放環境之放射率隨加熱時間增長而明顯上升,但在真空腔體內之鋁合金其放射率卻不隨加熱時間增長而改變,因為氧化層會隨著時間增加而成長進而造成表面放射率上升;(3) 合金成份對放射率的影響在氧化下比無氧化呈現顯著的差異。
    應用多光譜輻射測溫法搭配一階線性放射率模組於溫度推測:(1)應用於推測無氧化試件表面溫度之波段的選擇以3 µm到4 µm的結果最好;(2)應用於推測無氧化試件表面溫度的結果比推測有氧化試件表面溫度的結果來的好;(3)當放射率模組越能模擬鋁合金表面放射率行為,則所推測溫度誤差將越小。

    In this study, experiments were first conducted to investigate the surface emissivity for AL 1100, AL 2024, AL 5083, AL 6061, and AL 7005 at 600 K, 700 K, and 800 K under high vacuum. The data were compared with that of the same alloys at the same heating temperature under an open-air environment in order to analyze the effect of surface oxidation on emissivity. Multispectral radiation thermometry (MRT) with first-order linear emissivity model (LEM) was then applied to predict the surface temperature and examine the effect of surface oxidation on temperature determination as well.
    For emissivity behaviors of aluminum alloys under high vacuum: (1) emissivity decreases with increasing wavelength in the wavelength range from 2.8 μm to 4.2 μm which is chosen to exclude the atmospheric effect of water vapor and carbon dioxide; (2) overall, emissivity increases with increasing temperature; (3) emissivity dose not change with heating time; (4) the effect of alloy composition is minor at 600 K and 700 K, but much stronger at 800 K.
    For the effect of surface oxidation on emissivity: (1) most oxidized samples have higher emissivity than unoxidized samples, except AL 2024 and AL 7005. The exception is due to roughened surface caused by the onset of melt and the change of surface color at high heating temperature. Overall, emissivity of both oxidized and unoxidized samples increases with increasing temperature; (2) emissivity of unoxidized sample doesn’t change with time. However, emissivity of oxidized sample increases due to the growing oxide layer with time; (3) a stronger effect of alloy composition is evident for oxidized samples.
    For the examination of Multispectral radiation thermometry (MRT) with first-order linear emissivity model: (1) the best MRT examined wavelength range for unoxidized aluminum alloys is from 3 µm to 4 µm; (2) unoxidized samples provide better temperature prediction than oxidized samples; (3) if the emissivity model can well represent the real emissivity behaviors, the more accurate inferred temperature can be achieved.

    摘要 I Abstract III 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 2 1-2-1 氧化對放射率的影響 2 1-2-2 粗糙度對放射率的影響 8 1-3 研究目的 13 1-4 本文架構 13 第二章 實驗系統與實驗流程 16 2-1 實驗系統 16 2-1-1 開放環境實驗系統 16 2-1-2 高真空環境實驗系統 19 2-2 實驗步驟 33 2-2-1 紅外線光譜儀校正 33 2-2-2 開放環境系統的實驗步驟 36 2-2-3 高真空環境系統的實驗步驟 36 2-3 試件分類與製作 38 2-3-1 試件分類 38 2-3-2 試件製作 41 2-3-3 試件表面粗糙度 41 2-4 實驗不準度分析 44 第三章 理論基礎與輻射測溫法 46 3-1 輻射基本理論 46 3-2 試件輻射強度量測理論 49 3-3 輻射測溫法的介紹 52 3-3-1 單光譜輻射測溫法(SRT) 52 3-3-2 雙光譜輻射測溫法(DWRT) 54 3-3-3 多光譜輻射測溫法(MRT) 55 3-4 多光譜輻射測溫法之數值方法應用 56 3-4-1 正合法(Exact Technique) 56 3-4-2 最小平方法(Least-squares Technique) 57 第四章 結果與討論 60 4-1 放射率標準差分析 60 4-2 鋁合金於真空腔體內之放射率實驗結果與探討 62 4-2-1 波長的影響 62 4-2-2 加熱溫度的影響 62 4-2-3 加熱時間的影響 66 4-2-4 合金成份的影響 66 4-3 鋁合金有氧化與無氧化之放射率差異性 68 4-3-1 比較有氧化與無氧化加熱溫度對放射率的影響 75 4-3-2 比較有氧化與無氧化加熱時間對放射率的影響 75 4-3-3 比較有氧化與無氧化合金成份對放射率的影響 78 4-4 多光譜輻射測溫法搭配一階線性放射率模組之測溫結果 78 4-4-1 一階線性放射率模組之應用 78 4-4-2 選取不同波段去推測無氧化鋁合金的表面溫度 82 4-4-3 比較鋁合金有氧化與無氧化表面溫度之推測 84 第五章 結論與未來展望 87 5-1 結論 87 5-1-1 無氧化鋁合金表面放射率之行為 87 5-1-2 比較有氧化與無氧化鋁合金表面放射率之行為 87 5-1-3 多光譜輻射測溫法搭配一階線性放射率模組之測溫結果 88 5-2 未來展望 89

    1. Ansart, F., Ganda, H., Saporte, R., and Traverse, J. P., “Study of The Oxidation of Aluminum Nitride Coatings at High Temperature,” Thin Solid Films, Vol. 260, pp. 38-46, 1995.
    2. Bauer, W., Oertel, H., and Rink, M., “Spectral Emissivities of Bright and Oxidized Metals at High Temperature,”Fifteenth Symposium on Thermophysical Properties, June 22-27 2003
    3. Campo, L. D., Pérez-Sáez, R. B., Esquisabel, X., Fernández, I. and Tello, M. J., “New Experimental Device For Infrared Spectral Directional Emissivity Measurements In a Controlled Environment,” Review of Scientific Instruments, Vol. 77, pp. 113111, 2006
    4. Campo, L. D., Pérez-Sáez, R. B., Tello, M. J., “Iron Oxidation Kinetics Study by using Infrared Spectral Emissivity Measurements below570℃,’’ American institute of Physics, Vol. 77, pp. 113111-8, 2006.
    5. DeWitt, D. P., “Introduction to Radiation Thermometry,” Proceedings of the Aluminum Association Workshop on Sensors, pp. 19-39, Atlanta, May 1986.
    6. Doloresco, B. K., “Review of Multispectral Radiation Thermometry and Development of Constrained Minimization Method,” M. S. Thesis, Purdue University, school of Mechanical Engineering, West Lafayette, Dec 1986.
    7. Duvaut, Th., Georgeault, D., Beaudoin, J. L., “Multiwavelength Infrared Pyrometry: Optimization and Computer Simulations,” Infrared Physics and Technology, Vol. 36, pp. 1089-1103, 1995.
    8. Furukawa, T., and Iuchi, T., “Experimental Apparatus For Radiometric Emissivity Measurements of Metals,” Review of Scientific Instruments, Vol. 71, pp. 2843-2847, 2000.
    9. Haugh, M. J., “Infrared Thermometry for Low Emissivity Metals,” ISA Transactions, Vol. 22, No. 3, pp. 27-31, 1983.
    10. Haugh M. J., “Radiation Thermometry in the Aluminum Industry,” Theory and Practice of Radiation Thermometry, D. P. DeWitt and G. D. Nutter, ed., John Wiley and Sons, New York, pp. 905-971, 1988.
    11. Incropera F. P. and DeWitt, D. P., “Fundamentals of Heat and Mass Transfer,” 5th ed, John Wiley and Sons, New York, pp. 700-756, 2002.
    12. Ishii, J. and Ono, A., “Uncertainty Estimation For Emissivity Measurements Near Room Temperature With a Fourier Transform Spectrometer,” Measurement Science and Technology, Vol. 12, pp. 2103-2112, 2001.
    13. Iuchi, T., Furukawa, T., and Wada, S., “Emissivity Modeling of Metals During the Growth of Oxide Film and Comparison of the Model with Experimental Results”
    14. Ji, J., Gore, J. P., Sivathanu, Y. R. and Lim, J., “Fast Infrared Array Spectrometer used for Radiation Measurements of Lean Premixed Flames,” Proceedings of NHTC'00, 34th National Heat Transfer Conference, Pittsburgh, PA, pp. 1-6, 2000.
    15. Meriaudeau, F., Renier, E. and Truchetet, F., “Temperature Imaging and Image Processing in the Steel Industry,” Optical Engineering, Vol. 35, No. 12, pp. 3470-3481, 1996.
    16. Meriaudeau, F., Legrand, A. C. and Gorria, P., “Real Time Multispectral High Temperature Measurement: Application to Control in the Industry,” Proceedings of SPIE-IS&T Electronic Imaging, SPIE, Vol. 5011, pp. 234-242, 2003.
    17. Modest, M. F., “Radiative Heat Transfer,” 2nd ed, Academic Press, pp. 75-79, 2003.
    18. Otsuka, A., Hosono, K., Tanaka, R., Kitagawa, K. and Arai, N., “A Survey of Hemispherical Total Emissivity of the Refractory Metals in Practical Use,” Energy, Vol. 30, pp. 535-543, 2005.
    19. Pellerin, M. A., “Multispectral Radiation Thermometry: Emissivity Compensation Algorithm,” M.S. Thesis, Purdue University, school of Mechanical Engineering, 1990.
    20. Pellerin, M. A., “Multispectral Radiation Thermometry for Industrial Application,” PhD Thesis, Purdue University, school of Mechanical Engineering, Dec 1999.
    21. Reynolds, P. M., “Spectral Emissivity of 99.7% Aluminum between 200 and 500 ,” British J. Applied Physics, Vol. 12, pp. 111-114, 1961.
    22. Sinha, P. K., “Study of The Oxidation of Aluminum-Magnesium Alloys Using Ultramicrotomy For TEM Specimen Preparation,” M.S. Thesis, Purdue University, school of Metallurgical Engineering, 1994.
    23. Touloukian, Y. S. and DeWitt, D.P., “Thermal Radiative Properties, Metallic Elements and Alloys,” Thermophysical Properties of Matter, Vol. 7, Plenum Corp., New York. 1970.
    24. Tsai, B. K., Shoemaker, R. L., Dewitt, D. P., Cowans, B. A., Dardas, Z., Delgass, W. N., and Dail, G. J., “Dual-Wavelength Radiation Thermometry: Emissivity Compensation Algorithms,” International Journal of Thermophysics, Vol. 11(1), pp. 269-281, 1990.
    25. Wen, C., and Mudawar, I., “Experimental Investigation of Emissivity of Aluminum Alloys and Temperature Determination Using Multispectral Radiation Thermometry (MRT) Algorithms,” Journal of Materials Engineering and Performance, Vol. 11, pp. 551-562, 2002.
    26. Wen, C., and Mudawar, I., “Emissivity Characteristics of Roughened Aluminum Alloy Surfaces and Assessment of Multispectral Radiation Thermometry (MRT) emissivity models,” International Communications in Heat and Mass Transfer, Vol. 47, pp. 3591-3605, 2005.
    27. Wen, C., and Mudawar, I., “Emissivity Characteristics of Polished Aluminum Alloy Surfaces and Assessment of Multispectral Radiation Thermometry (MRT) emissivity models,” International Communications in Heat and Mass Transfer, Vol. 48, pp. 1316-1329, 2005.
    28. Wen, C., “Emissivity Characteristics of Aluminum Alloy Surfaces and Assessment of Multispectral Radiation Thermometry (MRT) Emissivity Models,” PhD Thesis, Purdue University, school of Mechanical Engineering, August 2005.
    29. Wen, C., and Mudawar, I., “Modeling the Effects of Surface Roughness on the Emissivity of Aluminum Alloys,” International Communications in Heat and Mass Transfer, Vol.49, pp. 4279-4289, 2006.
    30. Wen, C., and Mudawar, I., “Mathematical Determination of Emissivity and Surface Temperature of Aluminum Alloys using Multispectral Radiation Thermometry,” International Communications in Heat and Mass Transfer, Vol. 33, pp. 1063-1070, 2006.
    31. 池逸華, “鋼材放射率行為之實驗研究與線性及對數線性放射率模組在多光譜輻射 測溫法之應用,”碩士論文,國立成功大學機械系, 2007.
    32. 呂建財, “鋼材放射特徵研究與多光譜輻射測溫法之應用,” 碩士論文,國立成功大學機械系, 2007.
    33. 蔡宗原, “應用線性與對數線性放射率模組於多光譜輻射測溫法預測鋁合金表面溫度之研究,”碩士論文,國立成功大學機械系, 2008.
    34. 謝宗霖, “多光譜輻射測溫法放射率模組對預測鋁合金表面溫度的合宜性,”碩士論文,國立成功大學機械系, 2008.
    35. 武恭, 姚良均, 李震夏, 彭如清, 趙祖德, “鋁及鋁合金材料手冊,”科學出版社.

    下載圖示 校內:2010-07-30公開
    校外:2011-07-30公開
    QR CODE