簡易檢索 / 詳目顯示

研究生: 陳翊瑄
Chen, Yi-Hsuan
論文名稱: 應用於數位助聽器之雙麥克風架構適應性回授消除演算法
Dual Microphone Acoustic Feedback Cancellation Algorithm Applied to Digital Hearing Aids
指導教授: 雷曉方
Lei, Sheau-Fang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 79
中文關鍵詞: 適應性濾波器聲學回授音消除助聽器雙麥克風
外文關鍵詞: Adaptive Filter, Feedback Cancellation, Hearing Aids, Dual Microphone
相關次數: 點閱:96下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聲學回授音(Acoustic Feedback)對於助聽器使用者是主要干擾聲音辨識的因素之一,本研究提出新的適應性回授消除 (Adaptive Feedback Cancellation, 簡稱AFC) 演算法,使用雙麥克風架構,利用副麥克風收入語音作為主麥克風輸入語音的估測值,在適應性濾波器更新時去除輸入訊號的影響,一方面解決輸出訊號與輸入訊號相關性過高造成估測誤差提升的問題,另一方面也使適應性濾波器更新時不隨輸入訊號能量大小而波動,除此之外,本架構利用兩組適應性濾波器對雙麥克風做回授消除,改善原始架構在放大增益較大的情況會失效的缺點,滿足重度聽損者對於放大增益的需求。經過模擬,在不同回授路徑及不同放大增益下皆能有效的消除回授音,所估測出的回授路徑跟外部回授路徑相比,係數估測誤差(Misalignment)能減少7dB,此外,能多提供7dB的增加穩定增益(Added Stable Gain, 簡稱ASG)也加寬了助聽器所能調整的增益範圍,使需要較多補償的配戴者能有足夠的補償且不受回授音干擾影響,提升輸出音訊品質讓使用者能有較好的聽覺感受。

    In this thesis, a dual microphone adaptive feedback cancellation algorithm (AFC) is proposed. The reason of employing an additional microphone is to provide added information about the signal which is then utilized to obtain an incoming signal estimate. This estimate is removed from the primary microphone signal to create the error signal which adapts the adaptive filter’s coefficients. The purpose of using dual microphone is to overcome the problems remaining in using adaptive filters for feedback cancellation. One is the biased estimate of filter’s coefficients because of the correlation between the loudspeaker and incoming signal. The other is that filter’s coefficients may variate according to the change of incoming signal. Besides, in comparison to traditional work of dual microphone structure, the proposed can provide more gain compensation for a large class of hearing loss degree by making use of two adaptive filters to remove the feedback. That is, it can still cancel feedback noise without being out of control while the power of feedback noise increases. Finally, the results show that the proposed AFC is better than other AFC by 7 dB in misalignment and 7 dB extra added stable gain (ASG) is obtained. Those statistical indexes mean that proposed AFC can estimate feedback path more accurately and produce more precise output signal. Therefore, it is very suitable for future applications in the area of hearing aids.

    中文摘要 I EXTENDED ABSTRACT II 誌謝 IX 目錄 X 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1 研究背景 1 1.2 助聽器基本架構 6 1.3 助聽器聲學回授音介紹 7 1.4 回授消除相關作法簡介 11 1.5 提出演算法之動機與簡介 14 1.6 論文架構 16 第二章 適應性回授音消除之文獻回顧及介紹 17 2.1 適應性濾波器 18 2.1.1 維納濾波器 Wiener Filter 18 2.1.2 最小均方法 Least Mean Square (LMS) 20 2.1.3 正規化最小均方法 Normalized Least Mean Square (NLMS) 22 2.2 Continuous AFC, C-AFC 23 2.3 Band-Limited Filter-X AFC, BL-FX-AFC 28 2.4 Probe Noise Based AFC, PN-AFC 30 2.5 Prediction Error Mothod Based AFC, PEM-AFC 33 2.6 Dual Microphone Method Based AFC, DM-AFC 36 2.7 章節總結 39 第三章 雙麥克風架構適應性回授消除演算法 40 3.1 系統概述 40 3.2 雙麥克風設置 42 3.3 以雙麥克風訊號解相關性介紹 44 3.4 探測訊號 Probe Noise 47 3.5 正規化最小均方法與可調變步階參數 Normalized Least Mean Square (NLMS) and Variable Step Size (VSS) 49 3.6 演算法系統總結 53 第四章 模擬及結果探討 56 4.1 效能參數介紹 56 4.2 模擬環境設定 58 4.3 模擬結果及分析 62 第五章 結論及未來展望 77 參考文獻 78

    [1] Y. Li and L. Chang, “The application of band-limited NLMS algorithm in hearing aids,” in Computer Science and Information Processing (CSIP), 2012 International Conference on, 2012, pp. 1446-1449.
    [2] M. G. Siqueira, and A. Alwan, “Steady-state analysis of continuous adaptation in acoustic feedback reduction systems for hearing-aids,” Speech and Audio Processing, IEEE Transactions on, vol. 8, no. 4, pp. 443-453, 2000.
    [3] M. Guo, T. B. Elmedyb, S. H. Jensen, and J. Jensen, "On acoustic feedback cancellation using probe noise in multiple-microphone and single-loudspeaker systems," Signal Processing Letters, IEEE, vol. 19, pp. 283-286, 2012.
    [4] Y. M. Maluenda and J. C. M. Bermudez, "Transient mean-square analysis of prediction error method-based adaptive feedback cancellation in hearing aids," Audio, Speech, and Language Processing, IEEE Transactions on, vol. 20, pp. 261-275, 2012.
    [5] C. R. C. Nakagawa, S. E. Nordholm, and W.-Y. Yan, "Analysis of two microphone method for feedback cancellation," Signal Processing Letters, IEEE, vol. 22, pp. 35-39, 2015.
    [6] S.Haykin, “Adaptive Filter Theory,” Englewood Cliffs, NJ, 5th ed, Prentice Hall, 2013.
    [7] Q. Haijuan and Z. Linghua, "Adaptive feedback cancellation based on variable step-size affine projection for hearing aids," The Journal of China Universities of Posts and Telecommunications, vol. 22, pp. 6-56, 2015.
    [8] 行政院衛生福利部統計處. Available: http://www.mohw.gov.tw/cht/DOS/
    [9] A. Vonlanthen and H. Arndt, Hearing instrument technology for the hearing healthcare professional: Delmar Pub, 2007.
    [10] 郭姿吟, "助聽器音效問題解決策略對音效抱怨與滿意度之效應," 台灣,國立高雄 師範大學聽力學與語言治療研究所碩士論文, 2009.
    [11] T. Van Waterschoot and M. Moonen, "Fifty Years of Acoustic Feedback Control: State of the Art and Future Challenges," Proceedings of the IEEE, vol. 99, pp. 288-327, 2011.
    [12] J. Benesty, M. M. Sondhi, and Y. Huang, Springer handbook of speech processing: Springer Science & Business Media, 2007.
    [13] K.-A. Lee, W.-S. Gan, and S. M. Kuo, Subband adaptive filtering: theory and implementation: John Wiley & Sons, 2009.
    [14] A. Spriet, S. Doclo, M. Moonen, and J. Wouters, "Feedback control in hearing aids," Speech Enhancement of the Springer Handbook of Speech Processing and Speech Communication. Berlin: Springer, pp. 979-999, 2006.
    [15] H.-F. Chi, S. X. Gao, S. D. Soli, and A. Alwan, "Band-limited feedback cancellation with a modified filtered-X LMS algorithm for hearing aids," Speech Communication, vol. 39, pp. 147-161, 2003.
    [16] S. G. Sankaran and A. Beex, "Convergence behavior of affine projection algorithms," Signal Processing, IEEE Transactions on, vol. 48, pp. 1086-1096, 2000.
    [17] J.-I. Nagumo and A. Noda, "A learning method for system identification," Automatic Control, IEEE Transactions on, vol. 12, pp. 282-287, 1967.
    [18] M. A. Stone, B. C. Moore, K. Meisenbacher, and R. P. Derleth, "Tolerable hearing aid delays. V. Estimation of limits for open canal fittings," Ear and hearing, vol. 29, pp. 601-617, 2008.
    [19] J. Agnew and J. M. Thornton, "Just noticeable and objectionable group delays in digital hearing aids," JOURNAL-AMERICAN ACADEMY OF AUDIOLOGY, vol. 11, pp. 330-336, 2000.
    [20] T. Van Waterschoot and M. Moonen, "Adaptive feedback cancellation for audio signals using a warped all-pole near-end signal model," in Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on, 2008, pp. 269-272.
    [21] T. Van den Bogaert, E. Carette, and J. Wouters, "Sound source localization using hearing aids with microphones placed behind-the-ear, in-the-canal, and in-the-pinna," International Journal of Audiology, vol. 50, pp. 164-176, 2011.
    [22] M. Bouafif and Z. Lachiri, "Far-field Azimuth localization based on time delay of arrival estimation," in Telecommunications and Signal Processing (TSP), 2015 38th International Conference on, 2015, pp. 1-4.
    [23] R. Vicen-Bueno, R. Gil-Pita, M. Utrilla-Manso, and L. Álvarez-Pérez, "A hearing aid simulator to test adaptive signal processing algorithms," in Intelligent Signal Processing, 2007. WISP 2007. IEEE International Symposium on, 2007, pp. 1-6.
    [24] J. Hellgren and F. Urban, "Bias of feedback cancellation algorithms in hearing aids based on direct closed loop identification," Speech and Audio Processing, IEEE Transactions on, vol. 9, pp. 906-913, 2001.
    [25] N. A. Shusina and B. Rafaely, "Unbiased adaptive feedback cancellation in hearing aids by closed-loop identification," Audio, Speech, and Language Processing, IEEE Transactions on, vol. 14, pp. 658-665, 2006.
    [26] C. Janse and C. Tchang, "Acoustic feedback suppression," ed: Google Patents, 2005.
    [27] B. Rafaely, M. Roccasalva-Firenze, and E. Payne, "Feedback path variability modeling for robust hearing aids," The Journal of the Acoustical Society of America, vol. 107, pp. 2665-2673, 2000.
    [28] B. Edwards, "The future of hearing aid technology," Trends in amplification, vol. 11, pp. 31-46, 2007.
    [29] P. C. Loizou, Speech enhancement: theory and practice: CRC press, 2013.
    [30] C. R. C. Nakagawa, S. E. Nordholm, F. Albu, and W.-Y. Yan, "Closed-loop feedback cancellation utilizing two microphones and transform domain processing," in Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on, 2014, pp. 3645-3649.
    [31] E. Rothauser, W. Chapman, N. Guttman, K. Nordby, H. Silbiger, G. Urbanek, et al., "IEEE recommended practice for speech quality measurements," IEEE Trans. Audio Electroacoust, vol. 17, pp. 225-246, 1969.
    [32] 工研院文字轉語音Web服務. Available: http://tts.itri.org.tw/
    [33] (2008). EBU Tech 3253 Users' Handbook for the EBU SQAM CD. Available: https://tech.ebu.ch/publications/tech3253
    [34] J. G. Clark, "Uses and abuses of hearing loss classification," Asha, vol. 23, pp. 493-500, 1981.
    [35] T. Jiang, "Important revisions of ANSI S3. 6-1989: ANSI S3. 6-1996 American National Standard Specification for Audiometers," Canadian Journal of Speech-Language Pathology and Audiology, vol. 22, pp. 5-9, 1998.
    [36] F. Strasser and H. Puder, "Sub-band feedback cancellation with variable step sizes for music signals in hearing aids," in Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on, 2014, pp. 8207-8211.
    [37] S. Chomphan, "Tonal language speech compression based on a bitrate scalable multi-pulse based code excited linear prediction coder," Journal of Computer Science, vol. 7, p. 154, 2011.

    下載圖示 校內:2021-09-07公開
    校外:2021-09-07公開
    QR CODE