簡易檢索 / 詳目顯示

研究生: 彭皓澤
Peng, Hao-Tse
論文名稱: 潮汐沖洗對七股鹽田濕地鹽度的影響
Effects of Tidal Flushing on Salinity of Qigu Salt Pan Wetland
指導教授: 王筱雯
Wang, Hsiao-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 119
中文關鍵詞: 引水操作系統動力學地文性淹排水模式鹽度鹽田濕地
外文關鍵詞: water gate operation, system dynamic, PhD model, salinity, salt pan wetland
相關次數: 點閱:90下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台南市七股鹽田濕地為濕地保育之核心及黑面琵鷺度冬之重要棲地,鹽田濕地其中之一的台區鹽田南側目前於非汛期間僅依靠引水操作將海水引入鹽田,期望鹽田內部達到一定水深以利生物利用,但引入的海水蒸發後所剩的鹽份便累積在鹽田之中,導致鹽田表面形成一層鹽結晶,造成鹽田內累積越來越多的鹽份,使得土壤產生極度鹽害。七股鹽場於2002年全面廢曬之後,有許多的鹽田土地面臨廢曬且無人管理或利用的結果,而台區鹽田也是廢曬的鹽田之一,台區鹽田在經過多次工程改善及引水操作後,仍有引水效率不佳的問題。故本研究以台區鹽田作為本研究區域,擬定四個工程手段,分別為涵洞清淤、土堤打通、鹽田挖深及綜合以上三種工程,作為非汛期增加引水效率的手段,並藉由系統動力學(System Dynamic)搭配地文性淹水模式(Physiographic drainage-inundation model, PhD model)探討台區鹽田於此四種工程手段下,鹽田在24小時引水操作下各區塊水深、鹽度的分布以及涵洞排水效果。另外,本研究也會根據上述四種工程手段探討台區鹽田在汛期不同重現期下,鹽田內各區塊水深與鹽度的分布情形。由模擬結果發現到在非汛期,涵洞清淤能使鹽田排水更加順暢,但對整體的引水操作並無任何幫助;將鹽田內兩處土堤打通能使鹽田各區塊間之水體能更順暢的流通,但排水效果則受到限制;挖深鹽田能使水更快速的流至鹽田後半部,但會造成鹽田有蓄水情形發生,使得排水更加的困難;而三種工程均施作不但能使鹽田更有效率的引水,並能更全面的將原本鹽田內部的鹽份由涵洞沖洗出鹽田。在汛期的模擬結果發現到,涵洞清淤對鹽田排水效果最好。另外,較大的降雨重現期會使鹽田西方的蓄水池水位過高,而將排水涵洞淹沒,此時四種工程手段均無法達到排水的功能。期望管理者或決策者可參考本研究模擬結果,能使未來之引水操作能在不造成村莊淹水風險情況下更有效率地進行引水操作,並沖洗鹽田內累積的鹽份。

    The Qigu Salt Pan Wetland is the core of wetland protection and an important habitat for the black-faced spoonbill to spend the winter. However, the salt left after the evaporation of the introduced seawater is accumulated in the salt pan, causing a layer of salt crystals to form on the surface of the salt pan, resulting in the accumulation of more and more salt in the salt pan and causing extreme salt damage to the soil. After the total abandonment of the Qigu salt pan in 2002, many of the salt pan are facing abandonment and no one is managing or utilizing them, and the Tai district salt pan is one of the abandoned salt pan. In this study, four engineering methods, namely, culvert dredging, earthen dike opening, salt pan height reduction, and a combination of these three methods, were developed to increase water diversion efficiency during the non-flood season. In addition, the Physiographic drainage-inundation model (PhD model) was used to investigate the distribution of water depth and salinity in each salt pan and the effect of culvert drainage under the 24-hour water diversion operation in the salt pan. In addition, this study will also investigate the distribution of water depth and salinity in each area of the salt pan during different recurrence periods of the flood season according to the four engineering methods mentioned above. From the simulation results, it was found that culvert dredging could improve the drainage of the salt pan during the non-flood period, but it did not help the overall water diversion operation. In addition, this study will also investigate the distribution of water depth and salinity in each area of the salt pan during different recurrence periods of the flood season according to the four engineering methods mentioned above. From the simulation results, it was found that culvert dredging could improve the drainage of the salt pan during the non-flood period, but it did not help the overall water diversion operation. The opening of the two earthen dikes in the salt pan will enable the water to flow more smoothly between the various blocks of the salt pan, but the drainage effect is limited. Digging deeper can make water flow more quickly to the back half of the salt pan but it will cause water to pond in the salt pan, making drainage more difficult. The implementation of all three projects not only enables the salt pan to divert water more efficiently but also allows the salt inside the salt pan to be washed out of the salt pan through the culvert in a more comprehensive manner. The results of the simulation during the flood season showed that the culvert dredging was effective in draining the salt pan. In addition, the water level of the reservoirs in the western part of the salt pan will be too high during the recurrence of heavy rainfall and flood the drainage culverts, and all four engineering methods will fail to achieve the drainage function in this case. It is hoped that managers or decision makers can refer to the simulation results of this study to enable future water diversion operations to be carried out more efficiently without the risk of flooding the villages and to flush the salt accumulated in the salt pan.

    摘要 I 英文摘要 II 致謝 VII 目錄 VIII 圖目錄 XI 表目錄 XIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 1 1.3 研究架構 2 第二章 文獻回顧 5 2.1 濕地的定義 5 2.2 濕地的生態系統服務功能 5 2.3 水門操作與濕地復育 6 2.4 鹽度對濕地的影響 8 2.5 系統動力學 10 第三章 研究區域及方法 12 3.1 研究區域 12 3.1.1 研究區域現況 13 3.1.2 地文概述 15 3.1.3 水文概述 17 3.2 資料收集 19 3.2.1 研究區域周圍潮位 19 3.2.2 研究區域高程 20 3.2.3 研究區域土壤調查 22 3.2.4 曼寧n值設定 22 3.3 水門操作 23 3.4 系統動力學 26 3.4.1 系統動力學結構 26 3.4.2 演算方法 27 3.5 水理與鹽度模型 27 3.5.1 邊界條件 28 3.5.2 控制方程式 28 3.5.3 水理模型 28 3.5.4 鹽度模型 32 3.6 率定與驗證 33 3.7 頻率分析 34 3.7.1 水文頻率方程式 34 3.7.2 機率分布 35 3.7.3 樣本統計量與標準常態值 37 3.8 適合度檢定(GOODNESS OF FIT TEST) 38 3.8.1 假說檢定(Hypothesis Testing) 38 3.8.2 檢定種類 38 3.8.3 選定最佳分布 40 3.9 設計雨型 40 3.10 情境設計 41 3.10.1 工程情境 41 3.10.2 操作情境 42 3.10.3 降雨情境 42 3.10.4 研究假設 44 第四章 結果與討論 45 4.1 資料收集與調查成果 45 4.1.1 研究區域及周遭水深、鹽度 45 4.1.2 潮位調查結果 46 4.1.3 研究區域高程調查結果 48 4.1.4 研究區域土壤調查結果 49 4.2 水門操作結果 50 4.2.1 水門操作規則 50 4.2.2 12月16日水門操作結果 51 4.2.3 12月23日水門操作結果 52 4.3 模式之率定與驗證結果 54 4.3.1 模式率定 54 4.3.2 模式驗證 55 4.4 頻率分析結果 57 4.5 雨型設計結果 59 4.6 非汛期操作情境模擬結果及討論 62 4.6.1 工程情境一、A5涵洞清淤20公分 62 4.6.2 工程情境二、E1、E2間土堤與A5渠道、鹽田打通 70 4.6.3 工程情境三、第四排及第五排鹽田挖深5公分 78 4.6.4 工程情境四、三種工程情境加總 86 4.6.5 非汛期各情境之結果討論 95 4.7 汛期情境模擬結果及討論 98 4.7.1 工程情境一、A5涵洞清淤20公分 98 4.7.2 工程情境二、E1、E2間土堤與A5渠道、鹽田間土堤打通 101 4.7.3 工程情境三、第四排及第五排鹽田挖深5公分 104 4.7.4 工程情境四、三種工程情境加總 106 4.7.5 汛期各情境之結果討論 109 第五章 結論與建議 111 5.1 結論 111 5.1.1 現地調查 111 5.1.2 非汛期引水操作情境 111 5.1.3 汛期降雨情境 112 5.1.4 綜合評估 113 5.2 建議 114 參考文獻 115

    1. Ali, M. L., & Alam, S. S. (2005). Management of sluice gate/regulators for fish stock enhancement in modified floodplain without harm to rice. Paper presented at the Seminar on “Inland Open water Fisheries Development and Management in Poverty Reduction” held on.
    2. Assessment, M. E. (2005). Ecosystems and human well-being: wetlands and water: World resources institute.
    3. Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., & Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. Ecological monographs, 81(2), 169-193.
    4. Bernstein, L. (1975). Effects of salinity and sodicity on plant growth. Annual review of phytopathology, 13(1), 295-312.
    5. Bouksila, F., Bahri, A., Berndtsson, R., Persson, M., Rozema, J., & Van der Zee, S. E. (2013). Assessment of soil salinization risks under irrigation with brackish water in semiarid Tunisia. Environmental and experimental botany, 92, 176-185.
    6. Buchsbaum, R. N., Catena, J., Hutchins, E., & James-Pirri, M. J. (2006). Changes in salt marsh vegetation, Phragmites australis, and nekton in response to increased tidal flushing in a New England salt marsh. Wetlands, 26(2), 544-557.
    7. Burrough, P. A., McDonnell, R. A., & Lloyd, C. D. (2015). Principles of geographical information systems: Oxford university press.
    8. Chow, V., Maidment, D., & Mays, L. (1988). Applied Hydrology McGraw-Hill International Editions. New York, USA.
    9. Costanza, R., d'Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., . . . Paruelo, J. (1997). The value of the world's ecosystem services and natural capital. nature, 387(6630), 253-260.
    10. Council, N. R. (1992). Restoration of aquatic ecosystems: science, technology, and public policy: National Academies Press.
    11. Cunge, J. A. (1975). Two dimensional modeling of flood plains. Unsteady flow in open channels, 2, 705-762.
    12. Dahl, T., & Allord, G. (1996). Technical Aspects of Wetlands: History of Wetlands in the Conterminous United States; United States Geological Survey Water Supply Paper 2425. US Geological Survey: Reston, VA, USA.
    13. Daily, G. C. (1997). Introduction: what are ecosystem services. Nature’s services: Societal dependence on natural ecosystems, 1(1).
    14. Dasgupta, S., Hossain, M. M., Huq, M., & Wheeler, D. (2015). Climate change and soil salinity: The case of coastal Bangladesh. Ambio, 44(8), 815-826.
    15. Dias, M. P., Lecoq, M., Moniz, F., & Rabaça, J. E. (2014). Can human-made saltpans represent an alternative habitat for shorebirds? Implications for a predictable loss of estuarine sediment flats. Environmental management, 53(1), 163-171.
    16. Dibble, K. L., & Meyerson, L. A. (2012). Tidal flushing restores the physiological condition of fish residing in degraded salt marshes.
    17. D.M.Kent(Ed.),Applied Wetlands Science and Technology,Lewis Publisher,Boca Raton, Florida, USA(1994)
    18. Ehrenfeld, J. G. (2000). Defining the limits of restoration: the need for realistic goals. Restoration ecology, 8(1), 2-9.
    19. Galib, S. M., Lucas, M. C., Chaki, N., Fahad, F. H., & Mohsin, A. (2018). Is current floodplain management a cause for concern for fish and bird conservation in Bangladesh's largest wetland? Aquatic Conservation: Marine and Freshwater Ecosystems, 28(1), 98-114.
    20. Gardner, R. C., Barchiesi, S., Beltrame, C., Finlayson, C., Galewski, T., Harrison, I., . . . Rosenqvist, A. (2015). State of the world's wetlands and their services to people: a compilation of recent analyses.
    21. Homer, J. B., & Hirsch, G. B. (2006). System dynamics modeling for public health: background and opportunities. American journal of public health, 96(3), 452-458.
    22. Huckelbridge, K. H., Stacey, M. T., Glenn, E. P., & Dracup, J. A. (2010). An integrated model for evaluating hydrology, hydrodynamics, salinity and vegetation cover in a coastal desert wetland. Ecological Engineering, 36(7), 850-861.
    23. Kim, S. G. (2010). The evolution of coastal wetland policy in developed countries and Korea. Ocean & Coastal Management, 53(9), 562-569.
    24. Kingsford, R. T., Basset, A., & Jackson, L. (2016). Wetlands: conservation's poor cousins. Aquatic Conservation: Marine and Freshwater Ecosystems, 26(5), 892-916.
    25. Kuo, P. H., & Wang, H. W. (2018). Water management to enhance ecosystem services in a coastal wetland in Taiwan. Irrigation and Drainage, 67, 130-139.
    26. Ma, Z., Cai, Y., Li, B., & Chen, J. (2010). Managing wetland habitats for waterbirds: an international perspective. Wetlands, 30(1), 15-27.
    27. Meadows, D. H., Meadows, D. H., Randers, J., & Behrens III, W. W. (1972). The limits to growth: a report to the club of Rome (1972). Google Scholar, 91.
    28. Miah, M. Y., Mannan, M., Quddus, K., Mahmud, M., & Baida, T. (2004). Salinity on cultivable land and its effects on crops. Pakistan Journal of Biological Sciences (Pakistan).
    29. Montanarella, L., Scholes, R., & Brainich, A. (2018). Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn. In: Germany.
    30. Myers, W. D., & Swiatecki, W. (1969). Average nuclear properties. Annals of Physics, 55(3), 395-505.
    31. O’Brien, J. S. (2017). FLO-2D Reference Manual Version 2017.
    32. Okur, B., & Örçen, N. (2020). Soil salinization and climate change. In Climate change and soil interactions (pp. 331-350): Elsevier.
    33. Pilgrim, D. H., & Cordery, I. (1975). Rainfall temporal patterns for design floods. Journal of the Hydraulics Division, 101(1), 81-95.
    34. Roberts, M. J., & Tybout, J. R. (1997). The decision to export in Colombia: An empirical model of entry with sunk costs. The american economic review, 545-564.
    35. Rocha, A. D., Fonseca, D., Masero, J. A., & Ramos, J. A. (2016). Coastal saltpans are a good alternative breeding habitat for Kentish plover Charadrius alexandrinus when umbrella species are present. Journal of Avian Biology, 47(6), 824-833.
    36. Shamsuddoha, M., & Chowdhury, R. K. (2007). Climate change impact and disaster vulnerabilities in the coastal areas of Bangladesh. COAST Trust, Dhaka, 40-48.
    37. Shih, S.-S., Kuo, P.-H., Fang, W.-T., & LePage, B. A. (2013). A correction coefficient for pollutant removal in free water surface wetlands using first-order modeling. Ecological Engineering, 61, 200-206.
    38. Singh, A. (2020). Salinization and drainage problems of agricultural land. Irrigation and Drainage, 69(4), 844-853.
    39. Sterman, J. D. (2001). System dynamics modeling: tools for learning in a complex world. California management review, 43(4), 8-25.
    40. Swarajyalakshmi, G., Gurumurthy, P., & Subbaiah, G. (2003). Soil salinity in South India: problems and solutions. Journal of crop production, 7(1-2), 247-275.
    41. Thoms, M. C., Southwell, M., & McGinness, H. M. (2005). Floodplain–river ecosystems: Fragmentation and water resources development. Geomorphology, 71(1-2), 126-138.
    42. Wang, H.-W., Kuo, P.-H., & Dodd, A. E. (2020). Gate operation for habitat-oriented water management at Budai Salt Pan Wetland in Taiwan. Ecological Engineering, 148, 105761.
    43. Weinstein, M. P., Guo, Q., & Santasieri, C. (2021). Protecting people and property while restoring coastal wetland habitats. Estuaries and Coasts, 44(6), 1710-1721.
    44. Yen, B. C., & Chow, V. T. (1980). Design hyetographs for small drainage structures. Journal of the Hydraulics Division, 106(6), 1055-1076.
    45. Zedler, J. B. (2003). Wetlands at your service: reducing impacts of agriculture at the watershed scale. Frontiers in Ecology and the Environment, 1(2), 65-72.
    46. 侯漢君(1998)。系統動態的決策模式:以土地規劃為例。行政學報,29卷頁151-212。取自https://tpl.ncl.edu.tw/NclService/JournalContentDetail?SysId=A98023283
    47. 林浩潭(1999)。施肥與土壤鹽份累積。行政院農業委員會農業藥物毒物試驗所。青蒜綜合管理:17-24。
    48. 陳函馨(2002)。以系統動力學建立感潮河川水理與水質模式。國立中山大學海洋環境及工程學系研究所碩士論文,高雄市。取自https://hdl.handle.net/11296/77spa9
    49. 鄭韻如(2002)。多水庫聯合營運模式之建立與應用。國立交通大學土木工程系碩士論文,新竹市。取自https://hdl.handle.net/11296/f2z8dr
    50. 李志鵬(2004)。新型態多水庫聯合營運最佳操作規線之探討。國立交通大學土木工程系碩士論文,新竹市。取自https://hdl.handle.net/11296/23ufgy
    51. 謝惠紅、鄭士仁、劉璟燁、周世昌、蕭博仁(2006)。夏季日降雨量空間分佈特性之研究。農業工程學報,52(1),47-55。doi:10.29974/JTAE.200603.0005
    52. 蘇昀柏(2007)。系統流程轉換成動力流圖之研究-以水資源為例。國立交通大學土木工程系所碩士論文,新竹市。取自https://hdl.handle.net/11296/aj2v6p
    53. 李任馥(2007)。應用系統動力學於高屏溪流域水量水質改善策略之模擬分析。國立交通大學土木工程系所碩士論文,新竹市。取自https://hdl.handle.net/11296/r4j36r
    54. 陳昀翔(2008)。利用質量平衡與系統動力學研擬水污染防治策略。逢甲大學水利工程與資然保育研究所碩士論文,台中市。取自https://hdl.handle.net/11296/3c763r
    55. 內政部營建署(2013)。濕地保育法。https://www.cpami.gov.tw/%E6%9C%80%E6%96%B0%E6%B6%88%E
    6%81%AF/%E6%B3%95%E8%A6%8F%E5%85%AC%E5%91%8A/16504-%E6%BF%95%E5%9C%B0%E4%BF%9D%E8%82%B2%E6%B3%95.html
    56. 巫孟璇(2013)。地文性淹水即時預報模式之發展與應用。國立成功大學水利及海洋工程學系碩博士班博士論文,台南市。取自https://hdl.handle.net/11296/2g2t5a
    57. 郭品含(2015)。考量濕地生態系統服務之水環境管理-以布袋鹽田濕地為例。國立成功大學水利及海洋工程學系博士論文,台南市。取自https://hdl.handle.net/11296/rc6x53
    58. 內政部(2016)。七股鹽田重要濕地(國家級)保育利用計畫(草案)。
    59. 經濟部水利署(2017)。台灣地區雨量測站降雨強度-延時Horner公式參數分析。經濟部水利署。
    60. 台南市政府(2017)。擬定七股都市計畫。
    61. 彭珮斯(2017)。透過水管理活化廢曬鹽灘之研究。國立成功大學水利及海洋工程學系博士論文,台南市。取自https://hdl.handle.net/11296/22ge39
    62. 李光敦(2018)。水文學(三版)。台北市:五南圖書出版股份有限公司。
    63. 廖彥翔(2019)。七股鹽田濕地水門操作策略之研究。國立成功大學水利及海洋工程學系碩士論文,台南市。取自https://hdl.handle.net/11296/qw6ng6
    64. 王嘉和, 游翔麟, 梁益詮, 王嘉瑜, & 張倉榮. (2019)。街道及下水道之雙排水系統快速淹水模擬。農業工程學報, 65(1), 1-17 。doi:10.29974/JTAE.201903_65(1).0001
    65. 李晉安(2020)。嘉義沿海低地淹水調節策略-以嘉義縣北華村為例。國立成功大學水利及海洋工程學系碩士論文,台南市。取自https://hdl.handle.net/11296/dcu698
    66. 台江國家公園(2021)。地形景觀資源-海埔地與沙洲。https://www.tjnp.gov.tw/cp.aspx?n=441
    67. 林國凱(2021)。應用水門操作與工程手段於七股鹽田濕地環境管理策略。國立成功大學水利及海洋工程學系碩士論文,台南市。取自https://hdl.handle.net/11296/rpcq2b
    68. 張家誌(2021)。應用地文性淹排水模式提升鹽田濕地之棲地品質-以七股鹽田濕地為例。國立成功大學水利及海洋工程學系碩士論文,台南市。取自https://hdl.handle.net/11296/2thssp

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE