簡易檢索 / 詳目顯示

研究生: 易致廷
Yi, Chih-Ting
論文名稱: 以電化學法合成之鎳基奈米球作為鹼性條件下之高效能產氫電觸媒
Electrochemically Synthesized Nickel-Based Nanospheres as an Efficient Hydrogen Evolution Electrocatalyst at Alkaline Condition
指導教授: 林家裕
Lin, Chia-Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 56
中文關鍵詞: 產氫反應鹼性條件鎳基電沉積奈米碳管
外文關鍵詞: hydrogen evolution, alkaline condition, nickel-based, electrodeposition, carbon nanotube
相關次數: 點閱:117下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以電化學沉積法合成鎳基含磷化合物複合電觸媒材料,並且測試其在1 M KOH的鹼性條件下應用於產氫反應的電化學測試。鎳基含磷化合物複合電觸媒材料的微結構分析、成分元素分析等等物性分析,將利用掃描式電子顯微鏡(SEM)、能量散射光譜儀(EDS)、感應耦合電漿原子發射光譜儀(ICP-OES)和X光吸收光譜(XAS)等儀器作定性與定量分析;電化學性質分析將利用循環伏安法(CV)、線性掃描伏安法(LSV)和計時伏安法(Chronovoltammetry)等電化學分析方法。藉由探討電鍍電流密度與電鍍液之鎳磷組成比例找出最佳電催化活性的電鍍條件。在探討電鍍電流密度中了解隨著電流密度越強,鎳基電觸媒的球狀結構會越小,可以控制球徑大小750 nm至250 nm,另一方面,造成電化學活性表面積越大,觸媒活性與交換電流密度也越好,其中以-20000 μA cm-2電流密度為最佳條件,過電位與交換電流密度分別是176±1.3 mV與-5.3±0.1 μA cm-2。在電鍍液組成比例探討中,各組成比例合成之電觸媒的大小約為250 nm至230 nm之間,另一方面,磷前驅物的添加量會影響球狀結構的完整度,添加量太低甚至不含磷前驅物球狀結構將不復存,在電化學分析中,更進一步地發現,鎳金屬與含磷化合物複合材料會比純鎳金屬材料有更好的觸媒活性與交換電流密度,其中以0.2:0.04組成比例為最佳條件,綜合兩項參數電鍍合成之鎳基電觸媒,在1 M KOH的條件下具有高催化產氫活性及穩定性,過電位與交換電流密度分別是173±0.94 mV與-8.22±0.63 μA cm-2。接著再導入奈米碳管,藉由奈米碳管的高導電性與高表面積優點幫助鎳基電觸媒的催化活性,導入奈米碳管後不僅可以影響鎳基電觸媒的型態,球徑大小縮減至200 nm,更可以增加電催化產氫活性,過電位與TOF數值分別是162 mV與367.2 hr-1,TOF數值為沒有導入奈米碳管的1.7倍,意味著觸媒使用效率提升70%。

    Nickel-based electrocatalysts were synthesized by electrochemical method. The morphology of electrocatalysts, size and appearance of nanosphere were changed as adjusting the applied current density and composition of electrolyte. The performance of electrochemical hydrogen evolution of nickel-based electrocatalsyts including overpotential, TOF, tafel slope, exchange current density were optimized in terms of the applied current density and the composition of electrolyte. Finally, we imported carbon nanotube into the optimized nickel-based electrocatalysts in order to enhanced the electrochemical performance.

    摘要 I Extended Abstract II 誌謝 XI 總目錄 X 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1 研究背景 1 1.2 產氫反應電觸媒 3 1.2.1 貴重金屬材料之產氫反應電觸媒 7 1.2.2 非貴重金屬材料之產氫反應電觸媒 9 1.2.3 其他之產氫反應電觸媒 10 1.3 產氫反應機制 13 1.4 研究動機與目的 15 第二章 實驗步驟與研究方法 17 2.1 實驗材料 17 2.2 實驗儀器設備 19 2.3 鎳基電觸媒電極製備方法 20 2.3.1 以不同電鍍之電流密度合成鎳基電觸媒材料 21 2.3.2 以不同電鍍之電鍍液組成合成鎳基電觸媒材料 21 2.3.3 共電鍍合成鎳基電觸媒與奈米碳管複合材料電極 22 2.4 鎳基電觸媒物性分析方法 23 2.4.1 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 23 2.4.2 能量散射光譜儀 (Energy-dispersive X-ray spectrometer, EDS) 23 2.4.3 感應耦合電漿原子發射光譜儀 (Inductively Couple Plasma Optical Emission Spectrometer, ICP-OES) 24 2.5 鎳基電觸媒電化學特性分析方法 25 第三章 研究結果與討論 27 3.1 鎳基電觸媒之物性分析 27 3.2 電鍍之電流密度對鎳基電觸媒影響 28 3.2.1 鎳基電觸媒之微結構分析與成分鑑定 28 3.2.2 鎳基電觸媒之電化學性質分析 31 3.3 電鍍之電鍍液組成對鎳基電觸媒影響 36 3.3.1 鎳基電觸媒之微結構分析與成分鑑定 36 3.3.2 鎳基電觸媒之電化學性質分析 39 3.4 共電鍍合成鎳基電觸媒與奈米碳管複合材料 45 第四章 結論與未來展望 47 4.1 結論 47 4.2 建議與未來展望 48 第五章 參考文獻 49

    1. Y. Liang, Y. Li, H. Wang, and H. Dai, "Strongly Coupled Inorganic/Nanocarbon Hybrid Materials For Advanced Electrocatalysis," J Am Chem Soc, vol. 135, no. 6, pp. 2013-2036, Feb 13, 2013.

    2. N. S. Lewis and D. G. Nocera, "Powering the planet: chemical challenges in solar energy utilization.," Proc Natl Acad Sci USA vol. 104, no. 42, pp. 15729-15735, 2006.

    3. T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets, and D. G. Nocera, "Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds," Chem. Rev., vol. 110, pp. 6474–6502, 2010.

    4. M. G. Walter et al., "Solar water splitting cells," Chem. Rev., vol. 110, pp. 6446–6473, 2010.

    5. M. Caban-Acevedo et al., "Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide," Nat Mater, vol. 14, no. 12, pp. 1245-1251, Dec, 2015.

    6. Y. Yan, B. Y. Xia, B. Zhao, and X. Wang, "A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting," Journal of Materials Chemistry A, vol. 4, no. 45, pp. 17587-17603, 2016.

    7. Y. Yan et al., "Construction of Efficient 3D Gas Evolution Electrocatalyst for Hydrogen Evolution: Porous FeP Nanowire Arrays on Graphene Sheets," Adv Sci (Weinh), vol. 2, no. 8, p. 1500120, Aug, 2015.

    8. M. K. Bates, Q. Jia, N. Ramaswamy, R. J. Allen, and S. Mukerjee, "Composite Ni/NiO-Cr2O3 Catalyst for Alkaline Hydrogen Evolution Reaction," J Phys Chem C Nanomater Interfaces, vol. 119, no. 10, pp. 5467-5477, Mar 12, 2015.

    9. D. M. F. Santos, C. A. C. Sequeira, and J. L. Figueiredo, "HYDROGEN PRODUCTION BY ALKALINE WATER ELECTROLYSIS," Química Nova, vol. 36, pp. 1176-1193, 2013.

    10. W. F. Chen, J. T. Muckerman, and E. Fujita, "Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts," Chem Commun (Camb), vol. 49, no. 79, pp. 8896-8909, Oct 11, 2013.

    11. P. Häussinger, R. Lohmüller, and A. M. Watson, "Hydrogen, 2. Production," Oct 15, 2011.

    12. 李國興、張嘉修、林屏杰、林秋裕、吳石乙、洪俊雄, "厭氧生物產氫之研發," 化工期刊, vol. 54, no. 1, pp. 69-106, 2007.

    13. M. S. Dresselhaus and I. L. Thomas, "Alternative energy technologies.," Nature, vol. 414, pp. 332–337, 2001.

    14. M. Carmo, D. L. Fritz, J. Mergel, and D. Stolten, "A comprehensive review on PEM water electrolysis," International Journal of Hydrogen Energy, vol. 38, no. 12, pp. 4901-4934, 2013.

    15. M. Gong and H. J. Dai, "A mini review of nife-based materials as highly active oxygen evolution reaction electrocatalysts," Nano Res., vol. 8, pp. 23–39, 2015.

    16. A. J. Bard and L. R. Faulkner, "Electrochemical Methods:Fundamentals and Applications," JOHN WILEY & SONS, INC, new York, 1980.

    17. J. Chen, B. Lim, E. P. Lee, and Y. Xia, "Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications," Nano Today, vol. 4, no. 1, pp. 81-95, 2009.

    18. Y. Xu and B. Zhang, "Recent advances in porous Pt-based nanostructures: synthesis and electrochemical applications," Chem Soc Rev, vol. 43, no. 8, pp. 2439-2450, Apr 21, 2014.

    19. J. Zhang and C. M. Li, "Nanoporous metals: fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems," Chem Soc Rev, vol. 41, no. 21, pp. 7016-7031, Nov 7, 2012.

    20. D. V. Esposito and J. G. Chen, "Monolayer platinum supported on tungsten carbides as low-cost electrocatalysts: opportunities and limitations," Energy & Environmental Science, vol. 4, no. 10, p. 3900, 2011.

    21. D. V. Esposito, S. T. Hunt, Y. C. Kimmel, and J. G. Chen, "A new class of electrocatalysts for hydrogen production from water electrolysis: metal monolayers supported on low-cost transition metal carbides," J Am Chem Soc, vol. 134, no. 6, pp. 3025-3033, Feb 15, 2012.

    22. T. G. Kelly, K. X. Lee, and J. G. Chen, "Pt-modified molybdenum carbide for the hydrogen evolution reaction: From model surfaces to powder electrocatalysts," Journal of Power Sources, vol. 271, pp. 76-81, 2014.

    23. J. Greeley, T. F. Jaramillo, J. Bonde, I. B. Chorkendorff, and J. K. Norskov, "Computational high-throughput screening of electrocatalytic materials for hydrogen evolution," Nat Mater, vol. 5, no. 11, pp. 909-913, Nov, 2006.

    24. J. K. Nørskov. et al., "Trends in the Exchange Current for Hydrogen Evolution," Journal of The Electrochemical Society, vol. 153, no. 3, pp. 23-26, 2005.

    25. R. Parsons, "The Rate of Electrolytic Hydrogen Evolution and the Heat of Adsorption of Hydrogen," Trans. Faraday Soc., vol. 54, pp. 1053–1063, 1958.

    26. H. E. G. Rommal and P. J. Morgan, "The Role of Absorbed Hydrogen on the Voltage-Time Behavior of Nickel Cathodes in Hydrogen Evolution," J. Electrochem. Sac., vol. 135, pp. 343-346, 1988.

    27. D. M. Soares, O. Teschke, and I. Torriani, "Hydride Effect on the Kinetics of the Hydrogen Evolution Reaction on Nickel Cathodes in Alkaline Media," J. Electrochem. Soc., vol. 139, pp. 98-105, 1992.

    28. I. A. RAJ and K. I. VASU, "Transition metal-based hydrogen electrodes in alkaline solution - electrocatalysis on nickel based binary alloy coatings," Journal of Applied Electrochemistry, vol. 20, pp. 32-38, 1990.

    29. G. Lu, P. Evans, and G. Zangari, "Electrocatalytic Properties of Ni-Based Alloys Toward Hydrogen Evolution Reaction in Acid Media," Journal of The Electrochemical Society, vol. 150, pp. A551-A557, 2003.

    30. R. Subbaraman et al., "Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces," Science, vol. 334, pp. 1256–1260, 2011.

    31. N. Danilovic et al., "Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts," Angew Chem Int Ed Engl, vol. 51, no. 50, pp. 12495-12498, Dec 7, 2012.

    32. M. Gong et al., "Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis," Nat Commun, vol. 5, p. 4695, Aug 22, 2014.

    33. J. Deng, P. Ren, D. Deng, and X. Bao, "Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction," Angew Chem Int Ed Engl, vol. 54, no. 7, pp. 2100-2104, Feb 9, 2015.

    34. M. Tavakkoli et al., "Single-shell carbon-encapsulated iron nanoparticles: synthesis and high electrocatalytic activity for hydrogen evolution reaction," Angew Chem Int Ed Engl, vol. 54, no. 15, pp. 4535-4538, Apr 7, 2015.

    35. A. Oh et al., "Rational design of Pt-Ni-Co ternary alloy nanoframe crystals as highly efficient catalysts toward the alkaline hydrogen evolution reaction," Nanoscale, vol. 8, no. 36, pp. 16379-16386, Sep 15, 2016.

    36. M. S. Faber, M. A. Lukowski, Q. Ding, N. S. Kaiser, and S. Jin, "Earth-Abundant Metal Pyrites (FeS2, CoS2, NiS2, and Their Alloys) for Highly Efficient Hydrogen Evolution and Polysulfide Reduction Electrocatalysis," J. Phys. Chem. C., vol. 118, p. 21347−21356, 2014.

    37. J. Kibsgaard, Z. Chen, B. N. Reinecke, and T. F. Jaramillo, "Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis," Nat Mater, vol. 11, no. 11, pp. 963-969, Nov, 2012.

    38. D. Kong et al., "Synthesis of MoS2 and MoSe2 films with vertically aligned layers," Nano Lett, vol. 13, no. 3, pp. 1341-1347, Mar 13, 2013.

    39. Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, and H. Dai, "MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction," J Am Chem Soc, vol. 133, no. 19, pp. 7296-7299, May 18, 2011.

    40. M. Gong et al., "Blending Cr2O3 into a NiO-Ni electrocatalyst for sustained water splitting," Angew Chem Int Ed Engl, vol. 54, no. 41, pp. 11989-11993, Oct 5, 2015.

    41. J. R. McKone, B. F. Sadtler, C. A. Werlang, N. S. Lewis, and H. B. Gray, "Ni–Mo Nanopowders for Efficient Electrochemical Hydrogen Evolution," ACS Catalysis, vol. 3, no. 2, pp. 166-169, 2013.

    42. L. Feng, H. Vrubel, M. Bensimon, and X. Hu, "Easily-prepared dinickel phosphide (Ni2P) nanoparticles as an efficient and robust electrocatalyst for hydrogen evolution," Phys Chem Chem Phys, vol. 16, no. 13, pp. 5917-5921, Apr 7, 2014.

    43. D. Kong, H. Wang, Z. Lu, and Y. Cui, "CoSe2 nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction," J Am Chem Soc, vol. 136, no. 13, pp. 4897-4900, Apr 2, 2014.

    44. W. F. Chen et al., "Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets," Angew Chem Int Ed Engl, vol. 51, no. 25, pp. 6131-6135, Jun 18, 2012.

    45. M. Ledendecker, H. Schlott, M. Antonietti, B. Meyer, and M. Shalom," Experimental and Theoretical Assessment of Ni-Based Binary Compounds for the Hydrogen Evolution Reaction " Adv. Energy Mater., vol. 7, pp. 1601735, 2017.

    46. X. Zou et al., "Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values," Angew Chem Int Ed Engl, vol. 53, no. 17, pp. 4372-4376, Apr 22, 2014.

    47. X. Yang et al., "CoP nanosheet assembly grown on carbon cloth: A highly efficient electrocatalyst for hydrogen generation," Nano Energy, vol. 15, pp. 634-641, 2015.

    48. W. Sheng, H. A. Gasteiger, and Y. Shao-Hornb, "Hydrogen Oxidation and Evolution Reaction Kinetics on Platinum: Acid vs Alkaline Electrolytes," Journal of The Electrochemical Society, vol. 157, pp. B1529-B1536, 2010.

    49. Z.-H. Xue et al., "Janus Co/CoP Nanoparticles as Efficient Mott-Schottky Electrocatalysts for Overall Water Splitting in Wide pH Range," Advanced Energy Materials, vol. 7, no. 12, p. 1602355, 2017.

    50. L.-L. Feng et al., "Metallic Co9S8 nanosheets grown on carbon cloth as efficient binder-free electrocatalysts for the hydrogen evolution reaction in neutral media.," J. Mater. Chem. A, vol. 4, p. 6860−6867, 2016.

    51. P. Xiao et al., "Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction," Energy Environ. Sci., vol. 7, no. 8, pp. 2624-2629, 2014.

    52. M. Pi et al., "Phase-controlled synthesis of polymorphic tungsten diphosphide with hybridization of monoclinic and orthorhombic phases as a novel electrocatalyst for efficient hydrogen evolution," Journal of Power Sources, vol. 349, pp. 138-143, 2017.

    53. J. Tian, Q. Liu, N. Cheng, A. M. Asiri, and X. Sun, "Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water," Angew Chem Int Ed Engl, vol. 53, no. 36, pp. 9577-9581, Sep 1, 2014.

    54. Z. Xing, Q. Liu, A. M. Asiri, and X. Sun, "Closely interconnected network of molybdenum phosphide nanoparticles: a highly efficient electrocatalyst for generating hydrogen from water," Adv Mater, vol. 26, no. 32, pp. 5702-5707, Aug 27, 2014.

    55. N. Danilovic, R. Subbaraman, D. Strmcnik, V. Stamenkovic, and N. Markovic, "Electrocatalysis of the HER in acid and alkaline media," Journal of the Serbian Chemical Society, vol. 78, no. 12, pp. 2007-2015, 2013.

    56. J. Fournier et al., "Hydrogen Evolution Reaction in Alkaline Solution - Catalytic Influence of Pt Supported on Graphite vs. Pt Inclusions in Graphite," J. Electrochem. Soc., vol. 143, pp. 919-926, 1996.

    57. J. O. M. BOCKRIS and E. C. POTTER, "The Mechanism of the Cathodic Hydrogen Evolution Reaction," Journal of the Electrochemical Society, vol. 99, pp. 169-186, 1952.

    58. A. Lasia, "Hydrogen evolution reaction.," Handbook of Fuel Cells; John Wiley & Sons: New York, 2010.

    59. Z.-F. Huang, J. Wang, Y. Peng, C.-Y. Jung, A. Fisher, and X. Wang, "Design of Efficient Bifunctional Oxygen Reduction/Evolution Electrocatalyst: Recent Advances and Perspectives," Advanced Energy Materials, vol. 7, no. 23, p. 1700544, 2017.

    60. E. J. Popczun et al., "Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction," J. Am. Chem. Soc., vol. 135, p. 9267−9270, 2013.

    61. M. Ledendecker, S. Krick Calderón, C. Papp, H.-P. Steinrück, M. Antonietti, and M. Shalom, "The synthesis of nanostructured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting.," Angew. Chem., Int. Ed., vol. 54, p. 12361-12365, 2015.

    62. Reed, S. Appendix. In Electron Microprobe Analysis and Scanning Electron Microscopy in Geology, pp. 162-178, 2005.

    63. G. Qian, Y. Li, and A. R. Gerson, "Applications of surface analytical techniques in Earth Sciences," Surface Science Reports, vol. 70, no. 1, pp. 86-133, 2015.

    無法下載圖示 校內:2023-08-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE