簡易檢索 / 詳目顯示

研究生: 郭彥廷
Kuo, Yen-Ting
論文名稱: 以第一原理計算探討二維金屬有機骨架電催化觸媒和ZnIn2S4光催化觸媒電子性質對水分解反應之影響
Exploring the Influence of Electronic Properties of 2D Metal-Organic Framework Electrocatalyst and ZnIn2S4 Photocatalyst on Water Splitting Reactions via First-Principles Calculations
指導教授: 田弘康
Tian, Hong-Kang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 112
中文關鍵詞: 密度泛函理論自旋極化電催化氧氣析出反應光催化氫氣析出反應壓電極化
外文關鍵詞: Density functional theory, Spin-polarization, Electrocatalytic oxygen evolution reaction, photocatalytic H2 evolution, Piezoelectric polarization
相關次數: 點閱:58下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氫氣對於實現2050年碳中和目標扮演重要的角色,通過捕獲大氣中的CO2與氫氣合成碳氫化合物燃料,達成減碳目的。綠色氫氣的生產方法可以分為電催化產氫和光催化產氫。在電催化中分成在陰極發生的氫氣析出反應,以及在陽極進行的氧氣析出反應,然而,電解反應中陽極OER的高活化能導致整體水分解反應速率緩慢。因此,我們提出NiFe1:4-BHT 作為在各種Ni 和Fe比例下具有最佳OER催化效率的電催化劑,改善電催化OER效率。另一方面,在光催化分解水中,觸媒效率低以及嚴重的電子電洞再結合限制氫氣的產量。為了增強ZnIn2S4的電荷分離效率,本研究提出具有壓電特性和雙空位的ZnIn2S4來提高光催化氫氣析出反應活性。然而,若想從實驗上理解背後的機制,將會面臨實驗條件以及成本的挑戰。因此,我們使用密度泛函理論計算來研究NiFe1:4-BHT 和雙種類缺陷 ZnIn2S4的高催化效率,透過原子尺度下計算,理解NiFe1:4-BHT 和雙種類缺陷 ZnIn2S4材料特性上差異所導致出色催化效率的原因,並提出可能的反應機制,進而給予水分解光電催化觸媒材料設計方向。
    根據本研究結果顯示,Fe-BHT OER電催化觸媒經由摻雜Ni,將NiFe1:5-BHT的磁矩從Fe-BHT 的 1.94 μB 增加到 2.3 μB,並將 Fe 原子上 OH 的吸附能降低約 0.7 eV,同時將反應活化能降低約0.1 eV。同時,光催化產氫反應中我們發現較高的缺陷濃度會影響ZnIn2S4的性能,在10個S與4個In缺陷濃度下,ZnIn2S4電壓在[100]方向從2.4 V 增加到3.4 V。本研究提出新的光電催化劑設計方法,通過加入Ni至Fe-BHT不依靠外部磁場,使材料產生自發自旋極化改善OER活性,以及透過缺陷和壓電極化來減少電子和電洞的復合,改善光觸媒催化性能。透過自發自旋極化與壓電極化,為二維金屬有機骨架電催化觸媒和半導體光觸媒提出全新的設計觀點並提供重要的理論支持。

    Hydrogen is crucial for achieving carbon neutrality by 2050, and to meet carbon reduction goals, we can synthesize hydrocarbons from produced hydrogen and captured CO2 in the air. Methods for producing green hydrogen can be classified into water electrolysis and photolysis, both encountering challenges like the high activation energy of the oxygen evolution reaction (OER) in electrocatalysis and the brief lifespan of photocarriers in photocatalysis. We propose NiFe1:4-BHT as an electrocatalyst with optimal OER catalytic efficiency under various Ni and Fe ratios and ZnIn2S4 with piezoelectric properties and dual vacancies to enhance photocatalytic hydrogen evolution reaction activity. Using Density Functional Theory (DFT) calculations to understand these materials, our study reveals that doping increases the magnetic moment of NiFe1:5-BHT, reduces OH adsorption energy on Fe atoms, and lowers reaction activation energy. In ZnIn2S4, higher defect concentrations improve performance, with the voltage increasing in the [100] direction at higher defect concentrations. These findings offer new design perspectives for photoelectrocatalysts, enhancing OER activity through spin polarization and improving photocatalytic performance via defects and piezoelectric polarization.

    摘要 iii Abstract iv 誌謝 xi 第一章 緒論 21 1.1研究動機 21 第二章 文獻回顧 23 2.1 綠色氫能 23 2.2 電催化觸媒介紹 25 2.2.1 水電解產氫機制與原理 25 2.2.2 水電解的挑戰 26 2.2.3 貴金屬電催化觸媒 27 2.2.4 過渡金屬電催化觸媒 28 2.2.5 金屬有機骨架 29 2.2.5.1二維多種金屬電催化觸媒 30 2.3 苯六硫醇金屬有機骨架 31 2.4提升OER催化活性策略 33 2.4.1電催化觸媒晶體與表面 33 2.4.2多種金屬電催化觸媒 34 2.4.3 電催化觸媒自旋極化 35 2.5 BHT金屬有機骨架之電催化 36 2.5.1 BHT金屬有機骨架之電催化 36 2.5.2雙金屬BHT金屬有機骨架之電催化 37 2.6 光催化觸媒介紹 41 2.6.1 金屬硫化物光催化觸媒介紹 42 2.6.1.1 硫化鎘 42 2.6.1.2 硫化鋅 43 2.6.1.3 二硫化鉬 44 2.6.1.4 多成分硫化物光催化觸媒 45 2.6.1.4.1 硫化銦鋅 45 2.7提升光催化觸媒催化能力之策略 48 2.7.1 元素摻雜 48 2.7.2 缺陷工程 48 2.8 壓電光催化觸媒 49 2.8.1 內部自發極化電場 50 2.8.2 壓電光催化觸媒的挑戰 51 2.8.3 ZnIn2S4壓電光催化觸媒研究 51 第三章 理論計算背景與方法 54 3.1 Schrödinger Equation 54 3.2 Density functional theory 55 3.3 Exchange-Correlation Functionals 55 3.3.1 Local Density Approximation (LDA) 55 3.3.2 Generalized Gradient Approximation (GGA) 56 3.3.3 DFT+U 56 3.4 Density-Functional Perturbation Theory (DFPT) 57 3.5 Crystal Hamiltonian Graph Neural Network (CHGNet) 57 3.6 Vienna Ab initio Simulation Package (VASP) 57 3.7 計算設定 58 3.7.1 NiFe-BHT 58 3.8 分析方法 59 3.8.1 d-band center 59 3.8.2 Computational Hydrogen Electrode (CHE) 59 3.8.3 吸附能 61 3.8.4 彈性、壓電與介電係數計算 61 3.9 壓電電壓連續性模擬 62 3.9.1 連續性模型建立 63 3.9.2 機械壓電耦合 64 3.10材料製備 66 3.10.1 NiFe-BHT 66 3.10.2 ZnIn2S4 67 4.1 DFT模擬探討透過調整苯六硫醇基金屬有機骨架中Ni和Fe比例增強OER的機制 68 4.1.1 NiFex:y-BHT DFT計算與結構建立 68 4.1.2 NiFex:y-BHT 結果與討論 71 4.1.3 NiFex:y-BHT 結論 78 4.2 多尺度模擬探討通過缺陷和誘導壓電電壓提升ZnIn2S4的光催化產氫能力 79 4.2.1 ZnIn2S4 DFT計算與結構建立 79 4.2.2 ZnIn2S4結果與討論 87 4.2.3 ZnIn2S4結論 94 結論 95 參考資料 96 附錄 111

    1. Davis, S. J. et al. Net-zero emissions energy systems. Science (1979) 360, eaas9793 (2018).
    2. Wang, H.-F., Chen, L., Pang, H., Kaskel, S. & Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 49, 1414–1448 (2020).
    3. Lin, L., Hisatomi, T., Chen, S., Takata, T. & Domen, K. Visible-Light-Driven Photocatalytic Water Splitting: Recent Progress and Challenges. Trends Chem 2, 813–824 (2020).
    4. Nicoletti, G., Arcuri, N., Nicoletti, G. & Bruno, R. A technical and environmental comparison between hydrogen and some fossil fuels. Energy Convers Manag 89, 205–213 (2015).
    5. Raveendran, A., Chandran, M. & Dhanusuraman, R. A comprehensive review on the electrochemical parameters and recent material development of electrochemical water splitting electrocatalysts. RSC Adv 13, 3843–3876 (2023).
    6. Hassan, N. S. et al. Recent review and evaluation of green hydrogen production via water electrolysis for a sustainable and clean energy society. Int J Hydrogen Energy 52, 420–441 (2024).
    7. Yue, M. et al. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renewable and Sustainable Energy Reviews 146, 111180 (2021).
    8. Hota, P., Das, A. & Maiti, D. K. A short review on generation of green fuel hydrogen through water splitting. Int J Hydrogen Energy 48, 523–541 (2023).
    9. Shiva Kumar, S. & Lim, H. An overview of water electrolysis technologies for green hydrogen production. Energy Reports 8, 13793–13813 (2022).
    10. Safari, F. & Dincer, I. A review and comparative evaluation of thermochemical water splitting cycles for hydrogen production. Energy Convers Manag 205, 112182 (2020).
    11. Agyekum, E. B., Nutakor, C., Agwa, A. M. & Kamel, S. A Critical Review of Renewable Hydrogen Production Methods: Factors Affecting Their Scale-Up and Its Role in Future Energy Generation. Membranes (Basel) 12, (2022).
    12. Rodriguez, J. A., Senanayake, S. D., Stacchiola, D., Liu, P. & Hrbek, J. The Activation of Gold and the Water–Gas Shift Reaction: Insights from Studies with Model Catalysts. Acc Chem Res 47, 773–782 (2014).
    13. Ibrahim, K. B. et al. A review of transition metal-based bifunctional oxygen electrocatalysts. Journal of the Chinese Chemical Society 66, 829–865 (2019).
    14. Lee, Y., Suntivich, J., May, K. J., Perry, E. E. & Shao-Horn, Y. Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions. J Phys Chem Lett 3, 399–404 (2012).
    15. Deng, Z., Tseng, H.-W., Zong, R., Wang, D. & Thummel, R. Preparation and Study of a Family of Dinuclear Ru(II) Complexes That Catalyze the Decomposition of Water. Inorg Chem 47, 1835–1848 (2008).
    16. Romero, I. et al. Ru Complexes That Can Catalytically Oxidize Water to Molecular Dioxygen. Inorg Chem 47, 1824–1834 (2008).
    17. Gao, G. et al. Recent advances in Ru/Ir-based electrocatalysts for acidic oxygen evolution reaction. Appl Catal B 343, 123584 (2024).
    18. Stoerzinger, K. A. et al. Orientation-Dependent Oxygen Evolution on RuO2 without Lattice Exchange. ACS Energy Lett 2, 876–881 (2017).
    19. Qu, J., Zhang, X., Wang, Y. & Xie, C. Electrochemical reduction of CO2 on RuO2/TiO2 nanotubes composite modified Pt electrode. Electrochim Acta 50, 3576–3580 (2005).
    20. Indra, A. et al. Unification of Catalytic Water Oxidation and Oxygen Reduction Reactions: Amorphous Beat Crystalline Cobalt Iron Oxides. J Am Chem Soc 136, 17530–17536 (2014).
    21. Yaghi, O. M., Li, G. & Li, H. Selective binding and removal of guests in a microporous metal–organic framework. Nature 378, 703–706 (1995).
    22. Zhang, B. et al. Designing MOF Nanoarchitectures for Electrochemical Water Splitting. Advanced Materials 33, 2006042 (2021).
    23. Shi, Q. et al. Metal–organic frameworks-based catalysts for electrochemical oxygen evolution. Mater Horiz 6, 684–702 (2019).
    24. Hu, A. et al. Epitaxial Growth and Integration of Insulating Metal–Organic Frameworks in Electrochemistry. J Am Chem Soc 141, 11322–11327 (2019).
    25. Wang, J. et al. Conductive metal and covalent organic frameworks for electrocatalysis: design principles, recent progress and perspective. Nanoscale 14, 277–288 (2022).
    26. Liu, J. et al. 2D conductive metal–organic frameworks: an emerging platform for electrochemical energy storage. Angewandte chemie 133, 5672–5684 (2021).
    27. Song, X. Z., Zhang, N., Wang, X. F. & Tan, Z. Recent advances of metal-organic frameworks and their composites toward oxygen evolution electrocatalysis. Mater Today Energy 19, 100597 (2021).
    28. Li, F.-L. et al. Large-Scale, Bottom-Up Synthesis of Binary Metal–Organic Framework Nanosheets for Efficient Water Oxidation. Angewandte Chemie International Edition 58, 7051–7056 (2019).
    29. Zhao, S. et al. Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat Energy 1, 16184 (2016).
    30. Zhou, W. et al. Stable Hierarchical Bimetal–Organic Nanostructures as HighPerformance Electrocatalysts for the Oxygen Evolution Reaction. Angewandte Chemie International Edition 58, 4227–4231 (2019).
    31. Yang, R. et al. Synergistic coupling of CoFe-LDH arrays with NiFe-LDH nanosheet for highly efficient overall water splitting in alkaline media. Appl Catal B 253, 131–139 (2019).
    32. Li, F., Zhang, X., Liu, X. & Zhao, M. Novel Conductive Metal–Organic Framework for a High-Performance Lithium–Sulfur Battery Host: 2D Cu-Benzenehexathial (BHT). ACS Appl Mater Interfaces 10, 15012–15020 (2018).
    33. Toyoda, R. et al. Heterometallic Benzenehexathiolato Coordination Nanosheets: Periodic Structure Improves Crystallinity and Electrical Conductivity. Advanced Materials 34, 2106204 (2022).
    34. Downes, C. A., Clough, A. J., Chen, K., Yoo, J. W. & Marinescu, S. C. Evaluation of the H2 Evolving Activity of Benzenehexathiolate Coordination Frameworks and the Effect of Film Thickness on H2 Production. ACS Appl Mater Interfaces 10, 1719–1727 (2018).
    35. Clough, A. J., Yoo, J. W., Mecklenburg, M. H. & Marinescu, S. C. Two-Dimensional Metal–Organic Surfaces for Efficient Hydrogen Evolution from Water. J Am Chem Soc 137, 118–121 (2015).
    36. Kambe, T. et al. π-Conjugated Nickel Bis(dithiolene) Complex Nanosheet. J Am Chem Soc 135, 2462–2465 (2013).
    37. Takenaka, T. et al. Strongly correlated superconductivity in a copper-based metal-organic framework with a perfect kagome lattice. Sci Adv 7, eabf3996 (2024).
    38. Li, M. et al. First-Principles Exploration of 2D Benzenehexathiolate Coordination Nanosheets for Broadband Electrochromic Devices. Adv Funct Mater 32, 2202763 (2022).
    39. Fan, X. et al. From Theory to Experiment: Cascading of Thermocatalysis and Electrolysis in Oxygen Evolution Reactions. ACS Energy Lett 7, 343–348 (2022).
    40. Zhou, G. et al. Spin-state reconfiguration induced by alternating magnetic field for efficient oxygen evolution reaction. Nat Commun 12, 4827 (2021).
    41. Hamdani, M., Singh, R. N. & Chartier, P. Co3O4 and Co- Based Spinel Oxides Bifunctional Oxygen Electrodes. Int J Electrochem Sci 5, 556–577 (2010).
    42. Liu, J. et al. Activating Mn3O4 by Morphology Tailoring for Oxygen Reduction Reaction. Electrochim Acta 205, 38–44 (2016).
    43. Yan, K.-L. et al. Mesoporous Ag-doped Co3O4 nanowire arrays supported on FTO as efficient electrocatalysts for oxygen evolution reaction in acidic media. Renew Energy 119, 54–61 (2018).
    44. Gao, R. et al. Facet-Dependent Electrocatalytic Performance of Co3O4 for Rechargeable Li–O2 Battery. The Journal of Physical Chemistry C 119, 4516–4523 (2015).
    45. Zhang, H., Zhou, W., Dong, J., Lu, X. F. & Lou, X. W. (David). Intramolecular electronic coupling in porous iron cobalt (oxy)phosphide nanoboxes enhances the electrocatalytic activity for oxygen evolution. Energy Environ Sci 12, 3348–3355 (2019).
    46. Yang, B. et al. Serpentine CoxNi3-xGe2O5(OH)4 nanosheets with tuned electronic energy bands for highly efficient oxygen evolution reaction in alkaline and neutral electrolytes. Appl Catal B 260, 118184 (2020).
    47. Yao, M., Hu, H., Wang, N., Hu, W. & Komarneni, S. Quaternary (Fe/Ni)(P/S) mesoporous nanorods templated on stainless steel mesh lead to stable oxygen evolution reaction for over two months. J Colloid Interface Sci 561, 576–584 (2020).
    48. Landon, J. et al. Spectroscopic Characterization of Mixed Fe–Ni Oxide Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Electrolytes. ACS Catal 2, 1793–1801 (2012).
    49. Grewe, T., Deng, X. & Tüysüz, H. Influence of Fe Doping on Structure and Water Oxidation Activity of Nanocast Co3O4. Chemistry of Materials 26, 3162–3168 (2014).
    50. Xiao, C., Lu, X. & Zhao, C. Unusual synergistic effects upon incorporation of Fe and/or Ni into mesoporous Co3O4 for enhanced oxygen evolution. Chemical Communications 50, 10122–10125 (2014).
    51. Sheng, Y., Botero, M. L., Manuputty, M. Y., Kraft, M. & Xu, R. Co3O4 and FexCo3–xO4 Nanoparticles/Films Synthesized in a Vapor-Fed Flame Aerosol Reactor for Oxygen Evolution. ACS Appl Energy Mater 1, 655–665 (2018).
    52. Hung, S.-F. et al. Unraveling Geometrical Site Confinement in Highly Efficient Iron-Doped Electrocatalysts toward Oxygen Evolution Reaction. Adv Energy Mater 8, 1701686 (2018).
    53. Bai, H. et al. Advances in Spin Catalysts for Oxygen Evolution and Reduction Reactions. Small 19, 2205638 (2023).
    54. Lim, T., Niemantsverdriet, J. W. (Hans) & Gracia, J. Layered Antiferromagnetic Ordering in the Most Active Perovskite Catalysts for the Oxygen Evolution Reaction. ChemCatChem 8, 2968–2974 (2016).
    55. Wang, X. et al. Strain-promoted conductive metal-benzenhexathiolate frameworks for overall water splitting. J Colloid Interface Sci 624, 160–167 (2022).
    56. Lee, W. S. et al. Spontaneous-Spin-Polarized 2D π-d Conjugated Frameworks Towards Enhanced Oxygen Evolution Kinetics. Small n/a, 2401987 (2024).
    57. Zuo, G. et al. Ultrathin ZnIn2S4 Nanosheets Anchored on Ti3C2TX MXene for Photocatalytic H2 Evolution. Angewandte Chemie - International Edition 59, 11287–11292 (2020).
    58. Zhang, J. et al. Porous TiO2 Nanotubes with Spatially Separated Platinum and CoOx Cocatalysts Produced by Atomic Layer Deposition for Photocatalytic Hydrogen Production. Angewandte Chemie International Edition 56, 816–820 (2017).
    59. Huang, C. et al. Carbon-doped BN nanosheets for metal-free photoredox catalysis. Nat Commun 6, 7698 (2015).
    60. Nada, A. A. et al. BN/GdxTi(1-x)O(4-x)/2 nanofibers for enhanced photocatalytic hydrogen production under visible light. Appl Catal B 251, 76–86 (2019).
    61. Hong, I., Chen, Y.-A., Hsu, Y.-J. & Yong, K. Triple-Channel Charge Transfer over W18O49/Au/g-C3N4 Z-Scheme Photocatalysts for Achieving Broad-Spectrum Solar Hydrogen Production. ACS Appl Mater Interfaces 13, 52670–52680 (2021).
    62. Liu, Y. et al. Single-Atom Pt Loaded Zinc Vacancies ZnO–ZnS Induced Type-V Electron Transport for Efficiency Photocatalytic H2 Evolution. Solar RRL 5, 2100536 (2021).
    63. Xu, W. et al. One-pot synthesis of Ru/Nb2O5@Nb2C ternary photocatalysts for water splitting by harnessing hydrothermal redox reactions. Appl Catal B 303, 120910 (2022).
    64. Li, Z., Wu, Y. & Lu, G. Highly efficient hydrogen evolution over Co(OH)2 nanoparticles modified g-C3N4 co-sensitized by Eosin Y and Rose Bengal under Visible Light Irradiation. Appl Catal B 188, 56–64 (2016).
    65. Zhao, H., Jiang, P. & Cai, W. Graphitic C3N4 Decorated with CoP Co-catalyst: Enhanced and Stable Photocatalytic H2 Evolution Activity from Water under Visible-light Irradiation. Chem Asian J 12, 361–365 (2017).
    66. Tayyab, M. et al. A new breakthrough in photocatalytic hydrogen evolution by amorphous and chalcogenide enriched cocatalysts. Chemical Engineering Journal 455, 140601 (2023).
    67. Ejsmont, A., Jankowska, A. & Goscianska, J. Insight into the Photocatalytic Activity of Cobalt-Based Metal–Organic Frameworks and Their Composites. Catalysts 12, (2022).
    68. Shahid, M. U. et al. Transition metal chalcogenides and phosphides for photocatalytic H2 generation via water splitting: a critical review. Int J Hydrogen Energy 62, 1113–1138 (2024).
    69. Deng, F. et al. Metal sulfide-based Z-scheme heterojunctions in photocatalytic removal of contaminants, H2 evolution and CO2 reduction: Current status and future perspectives. J Clean Prod 416, 137957 (2023).
    70. Cheng, L., Xiang, Q., Liao, Y. & Zhang, H. CdS-Based photocatalysts. Energy Environ. Sci. 11, 1362–1391 (2018).
    71. Umaru, D. et al. A review of recent progress in solar fuel (Hydrogen) generation via photocatalytic water-splitting of cadmium sulfide (CdS) based photocatalyst. Applied Surface Science Advances 18, 100520 (2023).
    72. Shen, R. et al. Nanostructured CdS for efficient photocatalytic H2 evolution: A review. Sci China Mater 63, 2153–2188 (2020).
    73. Zhang, J., Wageh, S., Al-Ghamdi, AhmedA. & Yu, J. New understanding on the different photocatalytic activity of wurtzite and zinc-blende CdS. Appl Catal B 192, 101–107 (2016).
    74. Yang, Y. et al. Recent advances in application of transition metal phosphides for photocatalytic hydrogen production. Chemical Engineering Journal 405, 126547 (2021).
    75. Li, X., Li, Y., Guo, X. & Jin, Z. Design and synthesis of ZnCo2O4/CdS for substantially improved photocatalytic hydrogen production. Front Chem Sci Eng 17, 606–616 (2023).
    76. Zheng, W. & Zhang, S. The role of graphitic C3N4 in improving the photovoltaic performance of CdS quantum dots sensitized solar cells. Inorg Chem Commun 133, (2021).
    77. Qiu, B., Cai, L., Zhang, N., Tao, X. & Chai, Y. A Ternary Dumbbell Structure with Spatially Separated Catalytic Sites for Photocatalytic Overall Water Splitting. Advanced Science 7, (2020).
    78. Xue, S. et al. Interfacial engineering of lattice coherency at ZnO-ZnS photocatalytic heterojunctions. Chem Catalysis 2, 125–139 (2022).
    79. He, K. ZnO/ZnS/CdS three-phase composite photocatalyst with a flower cluster structure: Research on its preparation and photocatalytic activity hydrogen production. Int J Hydrogen Energy 51, 30–40 (2024).
    80. Hao, X. et al. Zinc vacancy-promoted photocatalytic activity and photostability of ZnS for efficient visible-light-driven hydrogen evolution. Appl Catal B 221, 302–311 (2018).
    81. Zhao, W. et al. Metastable MoS2: Crystal Structure, Electronic Band Structure, Synthetic Approach and Intriguing Physical Properties. Chemistry – A European Journal 24, 15942–15954 (2018).
    82. Chen, Z. et al. “Small amount for multiple times” of H2O2 feeding way in MoS2-Fex heterogeneous fenton for enhancing sulfadiazine degradation. Chinese Chemical Letters 33, 1365–1372 (2022).
    83. Luxa, J., Spejchalová, L., Jakubec, I. & Sofer, Z. MoS2 stacking matters: 3R polytype significantly outperforms 2H MoS2 for the hydrogen evolution reaction. Nanoscale 13, 19391–19398 (2021).
    84. Shah, S. A., Khan, I. & Yuan, A. MoS2 as a Co-Catalyst for Photocatalytic Hydrogen Production: A Mini Review. Molecules 27, (2022).
    85. Shi, J. et al. NH3-treated MoS2 nanosheets as photocatalysts for enhanced H2 evolution under visible-light irradiation. J Alloys Compd 688, 368–375 (2016).
    86. Xin, X. et al. One-step synthesis of P-doped MoS2 for efficient photocatalytic hydrogen production. J Alloys Compd 829, 154635 (2020).
    87. Xu, J. & Cao, X. Characterization and mechanism of MoS2/CdS composite photocatalyst used for hydrogen production from water splitting under visible light. Chemical Engineering Journal 260, 642–648 (2015).
    88. Zhu, Q. et al. Recent Progress of Metal Sulfide Photocatalysts for Solar Energy Conversion. Advanced Materials 34, 2202929 (2022).
    89. Shahid, M. U. et al. Transition metal chalcogenides and phosphides for photocatalytic H2 generation via water splitting: a critical review. Int J Hydrogen Energy 62, 1113–1138 (2024).
    90. Pan, Y. et al. Recent advances in synthesis, modification and photocatalytic applications of micro/nano-structured zinc indium sulfide. Chemical Engineering Journal 354, 407–431 (2018).
    91. Wang, J. et al. A review: Synthesis, modification and photocatalytic applications of ZnIn2S4. J Mater Sci Technol 78, 1–19 (2021).
    92. Yang, R. et al. ZnIn2S4-Based Photocatalysts for Energy and Environmental Applications. Small Methods 5, 2100887 (2021).
    93. Chen, Y. et al. Exploring the Different Photocatalytic Performance for Dye Degradations over Hexagonal ZnIn2S4 Microspheres and Cubic ZnIn2S4 Nanoparticles. ACS Appl Mater Interfaces 4, 2273–2279 (2012).
    94. Chen, Y. et al. Controlled syntheses of cubic and hexagonal ZnIn2S4 nanostructures with different visible-light photocatalytic performance. Dalton Trans. 40, 2607–2613 (2011).
    95. Wu, S. et al. Stabilizing CuGaS2 by crystalline CdS through an interfacial Z-scheme charge transfer for enhanced photocatalytic CO2 reduction under visible light. Nanoscale 12, 8693–8700 (2020).
    96. Jiao, X. et al. Defect-Mediated Electron–Hole Separation in One-Unit-Cell ZnIn2S4 Layers for Boosted Solar-Driven CO2 Reduction. J Am Chem Soc 139, 7586–7594 (2017).
    97. Zhang, K. et al. Surface Energy Mediated Sulfur Vacancy of ZnIn2S4 Atomic Layers for Photocatalytic H2O2 Production. Adv Funct Mater 33, 2302964 (2023).
    98. Xing, F., Liu, Q. & Huang, C. Mo-Doped ZnIn2S4 Flower-Like Hollow Microspheres for Improved Visible Light-Driven Hydrogen Evolution. Solar RRL 4, 1900483 (2020).
    99. Yang, W. et al. Enhanced Photoexcited Carrier Separation in Oxygen-Doped ZnIn2S4 Nanosheets for Hydrogen Evolution. Angewandte Chemie International Edition 55, 6716–6720 (2016).
    100. Du, C. et al. Half-unit-cell ZnIn2S4 monolayer with sulfur vacancies for photocatalytic hydrogen evolution. Appl Catal B 248, 193–201 (2019).
    101. He, Y. et al. Quantitative Evaluation of Carrier Dynamics in Full-Spectrum Responsive Metallic ZnIn2S4 with Indium Vacancies for Boosting Photocatalytic CO2 Reduction. Nano Lett 22, 4970–4978 (2022).
    102. Wang, X. et al. Induced dipole moments in amorphous ZnCdS catalysts facilitate photocatalytic H2 evolution. Nat Commun 15, 2600 (2024).
    103. Deng, X., Chen, P., Wang, X., Cui, R. & Deng, C. Dual-vacancy-mediated polarization electric field in ZnIn2S4 for enhancing photocatalytic hydrogen evolution coupled with selective benzylamine oxidation. Sci China Mater 66, 2299–2307 (2023).
    104. Zhu, Q. et al. Polarization-enhanced photocatalytic activity in non-centrosymmetric materials based photocatalysis: A review. Chemical Engineering Journal 426, 131681 (2021).
    105. Li, Z. et al. Dipole field in nitrogen-enriched carbon nitride with external forces to boost the artificial photosynthesis of hydrogen peroxide. Nat Commun 14, 5742 (2023).
    106. Zhong, W.-J. et al. Dual-Vacancy-Engineered ZnIn2S4 Nanosheets for Harnessing Low-Frequency Vibration Induced Piezoelectric Polarization Coupled with Static Dipole Field to Enhance Photocatalytic H2 Evolution. Advanced Materials n/a, 2403228 (2024).
    107. Born, M. & Oppenheimer, R. Zur Quantentheorie der Molekeln. Ann Phys 389, 457–484 (1927).
    108. Hohenberg, P. & Kohn, W. Inhomogeneous Electron Gas. Physical Review 136, B864–B871 (1964).
    109. Kohn, W. & Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review 140, A1133–A1138 (1965).
    110. Hubbard, J. & Flowers, B. H. Electron correlations in narrow energy bands. II. The degenerate band case. Proc R Soc Lond A Math Phys Sci 277, 237–259 (1997).
    111. Wu, Y. et al. Construction of p-n junctions in single-unit-cell ZnIn2S4 nanosheet arrays toward promoted photoelectrochemical performance. J Catal 401, 262–270 (2021).
    112. Li, M. et al. First-Principles Exploration of 2D Benzenehexathiolate Coordination Nanosheets for Broadband Electrochromic Devices. Adv Funct Mater 32, 2202763 (2022).
    113. Cococcioni, M. & de Gironcoli, S. Linear response approach to the calculation of the effective interaction parameters in the $mathrm{LDA}+mathrm{U}$ method. Phys Rev B 71, 35105 (2005).
    114. Gonze, X. Adiabatic density-functional perturbation theory. Phys Rev A (Coll Park) 52, 1096–1114 (1995).
    115. Baroni, S., Giannozzi, P. & Testa, A. Green’s-function approach to linear response in solids. Phys Rev Lett 58, 1861–1864 (1987).
    116. Baroni, S., de Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73, 515–562 (2001).
    117. Deng, B. et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling. Nat Mach Intell 5, 1031–1041 (2023).
    118. Kresse, G. & Furthmü, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. (1996).
    119. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54, 11169–11186 (1996).
    120. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys Rev Lett 77, 3865–3868 (1996).
    121. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132, 154104 (2010).
    122. Yu, K. & Carter, E. A. Communication: Comparing ab initio methods of obtaining effective U parameters for closed-shell materials. J Chem Phys 140, 121105 (2014).
    123. Yu, K. & Carter, E. A. A Strategy to Stabilize Kesterite CZTS for High-Performance Solar Cells. Chemistry of Materials 27, 2920–2927 (2015).
    124. Hammer, B. & Norskov, J. B. K. Electronic Factors Determining the Reactivity of Metal Surfaces. Surface Science vol. 343 (1995).
    125. Nørskov, J. K. et al. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J Phys Chem B 108, 17886–17892 (2004).
    126. Man, I. C. et al. Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces. ChemCatChem 3, 1159–1165 (2011).
    127. Liu, K.-Y., Liu, J. & Herbert, J. M. Accuracy of finite-difference harmonic frequencies in density functional theory. J Comput Chem 38, 1678–1684 (2017).
    128. Perger, W. F., Criswell, J., Civalleri, B. & Dovesi, R. Ab-initio calculation of elastic constants of crystalline systems with the CRYSTAL code. Comput Phys Commun 180, 1753–1759 (2009).
    129. de Gironcoli, S., Baroni, S. & Resta, R. Piezoelectric properties of III-V semiconductors from first-principles linear-response theory. Phys Rev Lett 62, 2853–2856 (1989).
    130. Wang, G., Chen, G., Yu, Y., Zhou, X. & Teng, Y. Mixed solvothermal synthesis of hierarchical ZnIn2S4 spheres: specific facet-induced photocatalytic activity enhancement and a DFT elucidation. RSC Adv. 3, 18579–18586 (2013).
    131. Shi, X. et al. Ultrathin ZnIn2S4 nanosheets with active (110) facet exposure and efficient charge separation for cocatalyst free photocatalytic hydrogen evolution. Appl Catal B 265, 118616 (2020).
    132. Cai, X. et al. Visible-light-driven water splitting by yolk-shelled ZnIn2S4-based heterostructure without noble-metal co-catalyst and sacrificial agent. Appl Catal B 297, 120391 (2021).
    133. Hjelmstad, K. D. Fundamentals of structural mechanics. Springer Science & Business Media (2007).
    134. Cady, W. G. Piezoelectricity: Volume Two: An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals. (2018).
    135. Wang, P., Xing, J., Jiang, X. & Zhao, J. Transition-Metal Interlink Neural Network: Machine Learning of 2D Metal–Organic Frameworks with High Magnetic Anisotropy. ACS Appl Mater Interfaces 14, 33726–33733 (2022).
    136. Fan, X. et al. From Theory to Experiment: Cascading of Thermocatalysis and Electrolysis in Oxygen Evolution Reactions. ACS Energy Lett 7, 343–348 (2022).
    137. Ren, Z. et al. Steric effects in the hydrogen evolution reaction based on the TMX4active center: Fe-BHT as a case study. Physical Chemistry Chemical Physics 23, 25239–25245 (2021).
    138. Wei, S., Zhou, X., Wang, Y. & Li, Y. Computational screening of two-dimensional metal-benzenehexathial for the oxygen reduction reaction. Catal Sci Technol 13, 3337–3343 (2023).
    139. Ren, X. et al. Spin-polarized oxygen evolution reaction under magnetic field. Nat Commun 12, 2608 (2021).
    140. Donika, F., Radautsan, S., Semiletov, S., Kiosse, G. & Mustya, I. Crystallographic Structure of a Two Packet Polytype ZnIn2S4 (II). Kristallografiya 17, 663–667 (1972).
    141. Zhang, Y. J., Tang, H. M. & Gao, S.-P. Density Functional Theory Study of ZnIn2S4 and CdIn2S4 Polymorphs Using Full-Potential Linearized Augmented Plane Wave Method and Modified Becke–Johnson Potential. physica status solidi (b) 257, 1900485 (2020).
    142. Wang, G., Chen, G., Yu, Y., Zhou, X. & Teng, Y. Mixed solvothermal synthesis of hierarchical ZnIn2S4 spheres: specific facet-induced photocatalytic activity enhancement and a DFT elucidation. RSC Adv. 3, 18579–18586 (2013).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE