| 研究生: |
羅冠名 Luo, Guan-Ming |
|---|---|
| 論文名稱: |
NETSTARS模式加入橋墩沖刷功能之研究 - 以八掌溪為例 NETSTARS Improvement Considering Pier Scouring - A Case Study of Pa-Chang River |
| 指導教授: |
王筱雯
Wang, Hsiao-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | NETSTARS 、誤差評估參數 、橋墩沖刷公式 、河床沖淤 |
| 外文關鍵詞: | NETSTARS, EVsediment, pier scour formula, riverbed evolution |
| 相關次數: | 點閱:69 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
天然河川的泥砂運動長時間趨於動態平衡狀態,建於河道上的橋樑會破壞原有的平衡條件,引起一系列水理及輸砂特性變化,沖刷現象反應在現有橋墩造成額外沖刷量。本研究以NETSTARS V3.0現有功能為基礎,根據橋墩沖刷相關研究,撰寫橋墩沖刷功能程式並新增18個常用的橋墩沖刷公式於模式中。
為了瞭解新增橋墩沖刷功能之數值模式模擬台灣河川橋墩沖刷的可行性,本研究選擇中上游沖刷嚴重且下游淤積明顯的八掌溪流域厚生橋至觸口橋共48.4公里長河段。綜合水文、輸砂特性考量,模式在固床工、攔河堰斷面處設定不可沖刷,輸入邊界條件與現有19座橋樑資訊完成輸砂模式建置,分為一般沖刷與局部沖刷階段進行檢定,利用誤差評估參數檢視最佳參數以反應八掌溪流域河床變遷趨勢。一般沖刷參數檢定之結果為上游來砂量倍數=0.001;輸砂公式=Ackers & White (1973);可沖刷層厚度參數=1;流管數=3,評估沖刷不足橋樑需進行局部沖刷之斷面進行參數檢定,局部沖刷參數檢定之結果為沖刷稽延時間=1500小時,橋墩沖刷公式=Jain and Fischer (1980),經分析為交通部建議公式。
本研究以模擬成果進一步對未來十年八掌溪河床沖淤趨勢進行預測,推測有沖刷危害橋樑包括過水橋、永欽一號橋、吳鳳橋、五虎寮橋、觸口橋,共五座。研究成果可作為一維數值模式新增橋墩沖刷功能之參考。
River sediment transport tends to be in a state of dynamic equilibrium; however bridges built on the watercourse will destroy the original balanced conditions and cause a series of changes in characteristics of hydraulics and sediment transport. Moreover, additional erosions can be resulted from existing piers. This study applied NETSTARS V3.0 by adding the calculation functions of eighteen pier scour formulas based on comprehensive literature review to demonstrate local scour mechanisms.
In order to understand whether different scour formulas are applicable to bridges in Taiwan and the feasibility of numerical model in scour simulation, Pa-Chang River, which has severe bed degradation in upstream and obvious bed aggradation in downstream reach, is chose for this study. The study area is part of the river starting from the Housheng Bridge to the Chukou Bridge with the length of 48.4 km. Considering hydraulic changes and sediment transport, the river bed of where the groundsill works and weirs are located are set to be not washed. Simulations are conducted by setting boundary conditions and importing information of nineteen bridges, and validations are separated into two parts: general and local scour stages. The best parameters are qualified by EV_sediment for the changing tendency of whole Pa-Chang river basin. Simulation results of the general scour parameter test shows the best parameters of the ratep is 0.001; ised is Ackers & White; alt is 1 and stube is 3. The local scour simulations are made in regions where local scour is needed to be considered with the idurds 1500 hours and Jain and Fischer as ibrino.
Finally, long-term riverbed evolution is simulated, suggesting that there are five bridges at risk of erosion hazards, which are Guoshui Bridge, Yongqin NO.1 Bridge, Wufeng Bridge, Wuhuliao Bridge, Chukou Bridge. The result can be used as reference of one-dimensional numerical model which adds pier scouring functions.
[1] 王傳益,2008,「定量流流況下水深對非均勻橋墩局部沖刷影響之研究」,逢甲大學水利工程與資源保育學系碩士班碩士論文。
[2] 吳虹邑,2005,「筐網結構物對橋墩沖刷保護之研究」,國立成功大學水利及海洋工程研究所碩士論文。
[3] 李鴻源、楊錦釧、葉克家、楊志達、謝慧民 ,1996,「辯狀河系沖淤模式之發展」,中興工程顧問社專案研究報告SEC/R-HY-96-07。
[4] 林景輝,1993,「圓柱型橋墩周圍局部沖刷之研究」,逢甲大學土木及水利工程研究所碩士論文。
[5] 顏啟鐘,2008,「八掌溪汫水港大橋安全評估報告」,水利技師公會。
[6] 邱永芳等,2011,「河道水位與橋墩沖刷推估模式之建立研究」,交通部運輸研究所研究報告。
[7] 邱永芳等,2011,「跨河橋梁安全預警系統之建立研究論文集」,交通部運輸研究所研究報告。
[8] 邱永芳等,2011,「跨河橋粱橋基沖刷檢測作業規範(草案)」,交通部運輸研究所研究報告。
[9] 邱永芳等,2011,「橋墩沖刷計算模式之建立研究」,交通部運輸研究所研究報告。
[10] 邱永芳等,2012,「橋粱殘餘壽齡與保全評估決策模式之研發(1/4)」,交通部運輸研究所研究報告。
[11] 黃良雄,2011,「探討氣候變遷下各區域河川海岸災害特性因應對策」,經濟部水利署。
[12] 經濟部水利署水利規劃試驗所,2006,「八掌溪仁義潭(攔河堰)下游沖刷河段治理方案之研析報告」。
[13] 蔡長泰等,1993,「台灣河川沈滓輸運之分析(三)」,水資會研究報告。
[14] 蔡得正,2009,「橋墩動床沖刷之現地實驗與探討」,國立成功大學水利及海洋工程研究所碩士論文。
[15] 謝慧民,2011,「河川沖淤模式NETSTARS進階功能研發計畫」,台灣首府大學資訊與多媒體設計學系研究報告第1001號。
[16] 謝慧民,2012,「複雜河系沖淤模式NETSTARS V3.0使用者技術手冊」,台灣首府大學資訊與多媒體設計學系研究報告第10103號。
[17] Breusers, H. N. C. and A. J. Raudkivi, 1991, “Scouring”, IAHR, Hydraulic Structure Design Manual, Vol.2, Belkema.
[18] Breusers, H. N. C., G. Nicollet and H. W. Shen, 1965, “Local Scour around Cylindrical Piers”, Journal of Hydraulic Research, Vol.15, pp.211-252.
[19] Brownlie, W. R., 1983, ‘‘Flow depth in sand-bed channels.’’ J. Hydraulic. Eng., 109(7), 959–990.
[20] Brownlie, William R., 1981, “Prediction of Flow Depth and Sediment Discharge in Open Channels,” Report No. KH-R-43A, California Institute of Technology, W.M. Keck Laboratory of Hydraulics and Water Resources, November 1981, Pasadena, CA.
[21] Chiew, Y. M., 2004, “Local Scour and Riprap Stability at Bridge Piers in a Degrading Channel”, Journal of Hydraulic Engineering, ASCE, Vol.130, No.3, March 1.
[22] Coleman, N. L., 1971, “Analyzing laboratory measurements of scour at cylindrical piers in sand beds, Procedure” 14th Congress IAHR, Vol. 3.
[23] DHI Software, 1992, “User guides and reference manuals for MIKE 11 model”, Danish Hydraulic Institute, Denmark.
[24] Engelund, F., and Hanson E., 1967, “A Monograph on Sediment Transport in Alluvial Streams”, Tekmish Forlag, Technical Press, Copenhagen, Denmark.
[25] Holly, F. M., and Rahuel, J. L., 1990, “New numerical/physical framework for mobile-bed modelling, part I: numerical and physical principles”, J. Hydr. Res., IAHR, 28(4), 401-416.
[26] Holly, F. M., Yang, J. C., and Spasojevic, M., 1985, “Numerical simulation of water and sediment movement in multi-connected networks of mobile bed”, Iowa Institute of Hydraulic Research, Limited Distribution Report No. 131, The University of Iowa, Iowa City, Iowa, USA.
[27] Holly, F. M., Yang, J. C., Schovarz, P., Scheefer, J., Hsu, S. H., and Einhellig, R., 1990, “CHARIMA: numerical simulation of unsteady water and sediment movements in multiply connected networks of mobile-bed channels”, IIHR Report No. 343, The University of Iowa, Iowa City, Iowa, USA.
[28] Jain S. C. and Fischer E. E. 1980, “Scour around Bridge Piers at High Velocity” Journal of Hydraulic Engineering, ASCE, Vol.106, No.11, pp.1827-1842.
[29] Jain, S. C., 1981, “Maximum Clear-Water Scour around Circular Piers”, Journal of Hydraulic Engineering, ASCE, Vol.107, No.5, pp.611-626.
[30] Karim, M. F., and Kennedy, J. F., 1982, “IALLUVIAL: a computer-based flow and sediment-routing model for alluvial streams and its application to the Missouri river”, Report No. 250, Iowa Inst. of Hydr. Res., Univ. of Iowa, Iowa City, Iowa, USA.
[31] Laursen, E. M., 1962, “Scour at Bridge Crossings”, Journal of the Hydraulic Division, ASCE, Vol.86, No.Hy2, February, pp.39-54.
[32] Li, R. M., Mussetter, R. A., and Grindeland, T. R., 1988, “Sediment-routing model: HEC2SR”, Subcommittee on Sedimentation, Interagency Advisory Committee on Water Data.
[33] Melville, B. W. and A. J. Sutherland, 1988, “Design Method for Local Scour at Bridge Piers”, Journal of Hydraulic Engineering, ASCE, Vol.114, No.10, October, pp.1210-1226.
[34] Melville, B. W., 1992, “Local Scour at Bridge Abutments”, Journal of the Hydraulic Division, ASCE, Vol.118, No.4, April, pp.615-631.
[35] Melville, B. W., and Coleman, S. E., 2000, “Bridge Scour”, Water Resources Publications, LLC, Highlands Ranch, Colorado, USA.
[36] Melville, B. W., and Y. M. Chiew, 1999, “Time scale for Local Scour at Bridge Piers.” Journal of Hydraulic Engineering, ASCE, 125(1):59-65.
[37] Molinas, A.M. and Yang, C.T., 1986, “Computer Program User's Manual for GSTARS”, U.S. Department of Interior Bureau of Reclamation, Engineering and Research Center, Denver, Colorado.
[38] Neill, C.R., 1964, “River-Bed Scour, a Review for Engineers”, Canadian Good Roads’ Assoc, Techn, Publ, No.23, Ottawa.
[39] Orvis, C. J., and Randle, T. J., 1987, “STARS: sediment transport and river simulation model”, Technical Guideline, Bureau of Reclamation, U.S. Department of Interior.
[40] Parola, A. C., S. K. Mahavadi, B. M. Brown and A. El Khoury, 1996,“Effects of Rectangular Foundation Geometry on Local Pier Scour”, Journal of Hydraulic Engineering, ASCE, pp.35-40.
[41] Raudkivi, A. J. and R. Ettema, 1983, “Clear-Water Scour at Cylindrical Piers”, Journal of Hydraulic Engineering, ASCE, Vol.111,No.4, April, pp.713-731.
[42] Raudkivi, A. J., 1986, “Functional Trends of Scour at Bridge Piers”, Journal of Hydraulic Engineering, ASCE, Vol.112, No.1, January, pp.1-13.
[43] Shen, H. W., Schneider, V. R., and Karaki, S., 1969, “Local Scour around Bridge Piers”, Journal of Hydraulic Engineering, ASCE, Vol.95, No.6, pp.1919-1940.
[44] U.S. Army Corps of Engineers., 1993, “HEC-6: scour and deposition in rivers and reservoirs, user’s manual”, Hydrological Engineering Center, CPD-6.