簡易檢索 / 詳目顯示

研究生: 周阜毅
Chou, Fu-I
論文名稱: 具指定性能之狀態觀測器的智能優化設計
Intelligent Optimal Design of State Observers with Specified Performance
指導教授: 鄭銘揚
Cheng, Ming-Yang
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 93
中文關鍵詞: 狀態觀測器軟感測器最佳性能設計正交函數法智能優化演算法
外文關鍵詞: state observers, soft sensors, optimal performance design, orthogonal functions method, intelligent evolutionary optimization
相關次數: 點閱:166下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本博士論文提出了數個狀態觀測器(也稱為軟感測器)設計方法,均可達成以下兩點: (i)指定狀態觀測器之特徵值以滿足期望的收斂性能或使得狀態估測誤差快速收斂到零;(ii)可最小化估測值與實際狀態間之偏差的二次性能指標,以減少觀測之暫態估測誤差。藉由結合正交函數方法和智能進化優化演算法的優點,本論文研究了基於可觀測形式動態系統的降階觀測器和狀態延遲系統的全階觀測器的設計問題。對於基於可觀測形式的動態系統,當輸出的數量大於要估測之狀態的數量時,本論文所提出的最優降階觀測器設計方法可用於設計觀測器的增益矩陣,而現有文獻的方法則無法做到此點。對於狀態延遲系統,基於線性矩陣不等式之條件的約束可使狀態估測誤差漸近收斂到零,從而減少穩態誤差,此外本論文所提出之具二次性能指標的全階觀測器設計方法針對暫態誤差給出懲罰,從而改善了狀態延遲系統的觀測器之暫態誤差性能。藉由求解Sylvester方程式並融合正交函數方法和智能進化優化演算法,本論文也研究了基於非可觀測形式動態系統之降階觀測器的設計問題;該基於非可觀測形式動態系統設計所獲得之降階觀測器,其估測狀態可以直接用於狀態回饋控制。本論文所提出之新穎設計方法可避免相關文獻中現有方法之缺點。從示範例中可以看出,本論文所提方法之狀態估測誤差快速收斂到零,並且其性能指標值明顯優於基於現有非最優設計方法的設計結果。

    Several new methods have been proposed in this dissertation to design state observers (also called soft sensors) such that (i) the eigenvalues are specified to satisfy desired convergence performance or the state estimation errors quickly converge to zero, and (ii) simultaneously, a quadratic performance measurement of the deviation of estimates from the actual states is minimized for reducing large error during the transient period of observation. By combining the merits of both the orthogonal functions approach (OFA) and intelligent evolutionary optimization (IEO) approach, both the design issues of reduced-order observers for observable-form-based linear time-invariant dynamical systems and full-order observers for linear time-invariant state-delay systems have been studied. For observable-form-based dynamical systems, the proposed optimal reduced-order observer design method can be used to uniquely determine the observer gain matrix when the number of outputs is greater than the number of states to be estimated, whereas existing approaches fail to do so. For state-delay systems, the constraint of the linear-matrix-inequality-based condition makes the state estimation errors asymptotically converge to zero so that the steady-state errors are reduced. Furthermore, the proposed full-order observer design method with the quadratic performance measurement gives a penalty for the transient error to improve the transient error performance of state-delay systems. By solving a Sylvester equation and by fusing the OFA approach and the IEO approach, the design issue of the reduced-order observer for non-observable-form-based linear time-invariant dynamical systems has also been studied. The estimated states obtained from the designed non-observable-form-based-reduced-order observer can be directly used for state feedback control. These proposed new design methods can avoid the shortcomings of existing approaches in relevant literatures. From the demonstrative examples, it can be seen that the state estimation errors of the proposed approaches quickly converge to zero and their performance measurement values are apparently much better than those based on the existing non-optimal design methods.

    中文摘要 ……………………………………………………………….. i Abstract ………………………………………………………..……… iii Acknowledgement ……………………………………………….....….. v Contents ……………………………………………………………….. vi List of Figures ….…………………………………………………….. viii Chapter 1 Introduction …………………………………….…………... 1 1.1 Literature Survey and Motivation …………………………………... 1 1.2 Organization of the Dissertation ……………………………………...7 Chapter 2 A Brief Review of Orthogonal Functions and the Hybrid Taguchi-Genetic Algorithm ………………………………………….....8 2.1 Properties of Orthogonal Functions ………………………...……...... 8 2.2 Hybrid Taguchi-Genetic Algorithm ……………………………..…. 11 Chapter 3 Optimal Design of Reduced-Order Observers for the Dynamical Systems of the Observable Form ……………………….. 15 3.1 Problem Statement …………………………………………………. 15 3.2 Optimal OFB-Reduced-Order Observer Design ………………….... 17 3.3 Illustrative Examples ………………………………………………. 21 3.4 Summary ………………………………………………….……….. 37 Chapter 4 Optimal Design of Reduced-Order Observers for the Dynamical Systems of Non-Observable Form ………………………. 38 4.1 Problem Statement …………………………………………………. 38 4.2 Optimal NOFB-Reduced-Order Observer Design ………………… 40 4.3 Illustrative Examples ………………………………………………. 45 4.4 Summary …………………………………………………………... 56 Chapter 5 Optimal Design of Full-Order Observers for State Delay Systems …………………………………………………………….….. 58 5.1 Problem Statement ………………………………………………… 58 5.2 Optimal Design of the Observer Gain Matrix ……………………… 60 5.3 Illustrative Example ……………………………………………….. 68 5.4 Summary …………………………………………………………... 73 Chapter 6 Conclusions and Future Research Directions …………... 74 6.1 Conclusions ………………………………………………………... 74 6.2 Future Research Directions ………………………………………… 82 References …………………………………………………………….. 83 Publication List …………………………………………………..…… 93

    1. Bagha, A. K., and Modak, S. V., “Active structural-acoustic control of interior noise in a vibro-acoustic cavity incorporating system identification”, J. of Low Frequency Noise, Vibration and Active Control, Vol. 36, pp. 261-276, 2017.
    2. Barnett, S., Matrix Methods for Engineers and Scientists, New York: McGraw-Hill, 1979.
    3. Bastin, G., and D. Dochain, D., On-Line Estimation and Adaptive Control of Bioreactors, Amsterdam: Elsevier, 1990.
    4. Bernat, J., Kolota, J., Superczynska, P., and Stepien, S., “Multi-layer observer as new structure for state estimation in linear systems”, Archives of Electrical Engineering, Vol. 66, pp. 507-521, 2017.
    5. Bettayeb, M., Al-Saggaf, U. M., and Djennoune, S., “High gain observer design for fractional-order non-linear systems with delayed measurements: application to synchronization of fractional-order chaotic systems”, IET Control Theory and Applications, Vol. 11, pp. 3171-3178, 2017.
    6. Bhrawy, A. H., Zaky, M. A., and Tenreiro Machado, J. A., “Numerical solution of the two-sided space-time fractional telegraph equation via Chebyshev Tau approximation”, J. of Optimization Theory and Applications, Vol. 174, pp. 321-341, 2017.
    7. Biswas, S., Samanata, R., and Das, G., “A detailed comparative study between reduced order Cumming observer and reduced order Das & Ghoshal observer”, Int. J. of Engineering Research and Development, Vol. 11, pp. 43-48, 2015.
    8. Bogaerta, P., and Wouver, A. V., “Software sensors for bioprocesses”, ISA Transactions, Vol. 42, pp. 547–558, 2003.
    9. Caballero-Morales, S. O., Martinez-Flores, J. L., and Sanchez-Partida, D., “Dynamic reduction-expansion operator to improve performance of genetic algorithms for the traveling salesman problem”, Mathematical Problems in Engineering, Vol. 2018, Article ID 2517460, 12 pages, 2018.
    10. Cao, X. Q., Spectral Method for Linear Time-Varying System Analysis and Optimal Control Synthesis, Beijing: Ordnance Industry Press, 1990.
    11. Chen C. H., and Chou, J. H., “Multiobjective optimization of airline crew roster recovery problems under disruption conditions”, IEEE Trans. on Systems, Man and Cybernetics: Systems, Vol. 47, pp. 133-144, 2017.
    12. Chen, C. T., Linear System Theory and Design, New York: CBS College Publishing, 1984.
    13. Chen, C. T., Linear System Theory and Design, New York: Oxford University Press, 2014.
    14. Cheng, S. L., and Hwang, C., “Optimal approximation of linear systems by a differential evolution algorithm,” IEEE Trans. on Systems, Man and Cybernetics, Part A, Vol. 31, pp. 698-707, 2001.
    15. Chou, J. H., and Horng, I. R., “Parameter identification of nonlinear systems via shifted Chebyshev series”, Int. J. of Systems Science, Vol. 18, pp. 895-900, 1987.
    16. Chou, J. H., and Horng, I. R., “Optimal control of deterministic systems described by integrodifferential equations via Chbyshev series”, ASME J. of Dynamic Systems, Measurement and Control, Vol. 109, pp. 345-348, 1987.
    17. Chou, J. H., Liao, W. H., and Li, J. J., “Application of Taguchi-genetic method to design optimal grey-fuzzy controller of a constant turning force systems”, in Proc. Of the 15th CSME Annual Conference, Tainan, Taiwan, pp. 31-38, 1998.
    18. Chou, P. Y., Tsai J. T., and Chou, J. H., “Modeling and optimizing tensile strength and yield point on steel bar by artificial neural network with particle swarm optimizer”, IEEE Access, Vol. 4, pp. 585-593, 2016.
    19. Cumming, S. D. G., “Design of observer of reduced dynamics,” Electronics Letters, Vol. 5, pp. 213-214, 1969.
    20. Datta, K. B., and Mohan, B. M., Orthogonal Functions in Systems and Control, Singapore: World Scientific Publishing Company, 1995.
    21. Elbouyahyaoui, L., Heyouni, M., Jbilou K., and Messaoudi, A., “A block Arnoldi based method for the solution of the Sylvester-observer equation,” Electronic Transactions on Numerical Analysis, Vol. 47, pp. 18-36, 2017.
    22. Ellis, G., Observers in Control Systems, London: Academic Press, 2002.
    23. Engelbrecht, A. P., Computational Intelligence, New Jersey: John Wiley and Sons, 2007.
    24. Escobar Jimenez, R. F., Astorga Zaragoza, C. M., Hernandez, Z. A., Medina, M. A., and Guerrero Ramirez, G. V., “Design and implementation of an observer-based soft sensor for a heat exchanger”, Dyna Rev.Fac.Nac.Minas, Vol. 78, pp. 89-97, 2011.
    25. Ezz-Eldien, S. S., Hafez, R. M., Bhrawy, A. H., Baleanu, D., and El-Kalaawy, A. A., “New numerical approach for fractional variational problems using shifted Legendre orthonormal polynomials”, J. of Optimization Theory and Applications, Vol. 174, pp. 295-320, 2017.
    26. Fan, K. K., and Hsieh, J. G., “LMI approach to design of robust state observer for uncertain systems with time-delay perturbation”, in Proc. of the 2002 IEEE International Conference on Industrial Technology, Bankok, Thailand, pp. 1111-1115, 2002.
    27. Farza, M., Hammouri, H., Othman, S., and Busawon, K., “Nonlinear observers for parameter estimation in bioprocesses”, Chemical Engineering Science, Vol. 52, pp. 4251–4267, 1997.
    28. Fu, Y. M., Zhang, P., and Duen, G. R., “Design of state observer for a class of linear time-delay systems”, J. of Natural Science of Helongjiang University, Vol. 22, pp. 16-20, 2005.
    29. Furlan, I., Bianchi, M., Caminiti, M., and Montu, G., “An approach to the optimal observer design with selectable bandwidth”, in Proc. of the 13th International Conference of the European Society for Precision Engineering and Nanotechnology, Berlin, Germany, pp. 244-247, 2013.
    30. Gahinet, P., Nemirovski, A., Laub, A. J., and Chilali, M., LMI Control Toolbox, Massachusetts: The Math Works Inc, 1995.
    31. Gen, M., and Cheng, R., Genetic Algorithms and Engineering Design, New York: Wiley, 1997.
    32. Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, Massachusetts: Addison-Wesley, 1989.
    33. Hale, J. K., and S. M. Verduyn Lunel, S. M., Introduction to Functional Differential Equations, New York: Springer-Verlag, 1993.
    34. Ho, W. H., and Chou, J. H., “Design of optimal controllers for Takagi-Sugeno fuzzy model based systems,” IEEE Trans. on Systems, Man and Cybernetics, Part A, Vol. 37, pp. 329-339, 2007.
    35. Ho, W. H., Tsai, J. T., and Chou, J. H., “Robust-stable and quadratic-optimal control for TS-fuzzy-model-based control systems with elemental parametric uncertainties,” IET Control Theory and Applications, Vol. 1, pp. 731-742, 2007.
    36. Ho, W. H., Tsai, J. T., and Chou, J. H., “Robust quadratic-optimal control of TS-fuzzy-model-based dynamic systems with both elemental parametric uncertainties and norm-bounded approximation error,” IEEE Trans. on Fuzzy Systems, Vol. 17, pp. 518-531, 2009.
    37. Ho, W. H., Tsai, J. T., Chou, J. H., and Yue, J. B., “Intelligent hybrid Taguchi-genetic algorithm for multi-criteria optimization of shaft alignment in marine vessels,” IEEE Access, Vol. 4, pp. 2304-2313, 2016.
    38. Horng, I. R., and Chou, J. H., "Analysis, parameter estimation and optimal control of time-delay systems via Chebyshev series", Int. J. of Control, Vol. 41, pp. 1221-1234, 1985.
    39. Horng I. R., and Chou, J. H., “Application of shifted Chebyshev series to the optimal control of linear distributed systems”, Int. J. of Control, Vol. 42, pp. 233-241, 1985.
    40. Horng, I. R., and Chou, J. H., “The design of optimal observers via shifted Chebyshev polynomials”, Int. J. of Control, Vol. 41, pp. 549-556, 1985.
    41. Horng, I. R., and Chou, J. H., “Design of optimal observers with specified eigenvalues via shifted Legendre polynomials”, J. of Optimization Theory and Applications, Vol. 51, pp. 179-188, 1986.
    42. Hsieh, C. H., and Chou, J. H., “Design of optimal PID controllers for PWM feedback systems with bilinear plants,” IEEE Trans. on Control Systems Technology, Vol. 15, pp. 1075-1079, 2007.
    43. Hsu, M. R., Ho, W. H., and Chou, J. H., “Stable and quadratic-optimal control for the TS-fuzzy-model-based time-delay control systems”, IEEE Trans. on Systems, Man and Cybernetics, Part A, Vol.38, pp.933-944, 2008.
    44. Huong, D. C., “A fresh approach to the design of observers for time-delay systems”, Transactions of the Institute of Measurement and Control, Vol. 40, pp.477-503, 2018.
    45. Johnson, C. D., “Optimal initial conditions for full-order observers”, Int. J. of Control, Vol. 48, pp. 857-864, 1988.
    46. Kuila, S., and Das, G., “Construction of reduced order observer for linear time invariant system using generalized matrix inverse”, J. of the Institution of Engineers: Series B, Vol. 94, pp. 141-145, 2013.
    47. Kung, F. C., and Yeh, Y. M., “Optimal observer design with specified eigenvalues for time-invariant linear system”, Trans. ASME J. of Dynamic Systems, Measurement and Control, Vol. 102, pp. 148-150, 1980.
    48. Kuo, B. C., and Golnaraghi, F., Automatic Control Systems, New Jersey: John Wiley and Sons, 2003.
    49. Li, T. H. S., Liu, C. Y., Kuo, P. H., Fang, N. C., Li, C. H., Cheng, C. W., Hsieh, C. Y., Wu, L. F., Liang, J. J., and Chen, C. Y., “A three-dimensional adaptive PSO-based packing algorithm for an IoT-based automated e-fulfillment packaging system”, IEEE Access, Vol. 5, pp. 9188-9205, 2017.
    50. Li, T. H. S., Wang, Y. H., Chen, C. C., and Lin, C. J., ”A fast color information setup using EP-like PSO for manipulator grasping color objects”, IEEE Trans. on Industrial Informatics, Vol. 10, pp. 645-654, 2014.
    51. Li, Y. L., Shao, W., You, L., and Wang, B. Z., “An improved PSO algorithm and its application to UWB antenna design”, IEEE Antennas Wireless Propagation Letters, Vol. 12, pp. 1236-1239, 2013.
    52. Mohajerpoor, R., Abdi, H., and Nahavandi, S., “A new algorithm to design minimal multi-functional observers for linear systems”, Asian J. of Control, Vol. 18, pp. 842-857, 2016.
    53. Mohan, B. M., and Kar, S. K., Continuous Time Dynamical Systems, Florida: CRC Press, 2013.
    54. Montgomery, D. C., Design and Analysis of Experiments, New York: Wiley, 1991.
    55. Nguyen, M. C., and Trinh, H., “Reduced-order observer design for one-sided Lipschitz time-delay systems subject to unknown inputs”, IET Control Theory and Applications, Vol. 10, pp. 1097-1105, 2016.
    56. Novytska, N. D., “Synthesis of optimal observer for dynamic object”, in Proc. of the 4th International Conference on Methods and Systems of Navigation and Motion Control, Kyiv, Ukraine, pp. 166-169, 2016.
    57. Park, J. K., Shin, D. R., and Chung, T. M., “Dynamic observers for linear time-invariant systems”, Automatica, Vol. 38, pp. 1083-1087, 2002.
    58. Patra, A., and Rao, G. P., General Hybrid Orthogonal Functions and their Applications in Systems and Control, London: Springer, 1996.
    59. Pekař, L., Matušů, R., and Yang, R., “Advances in modelling, analysis, and design of delayed Systems”, Mathematical Problems in Engineering, Vol. 2018, Article ID 5078027, 4 pages, 2018.
    60. Phadke, M. S., Quality Engineering Using Robust Design, New Jersey: Prentice-Hall, 1989.
    61. Radisavljevic-Gajic, V., “Full- and reduced-order linear observer implementations in Matlab/Simulink”, IEEE Control Systems Magazine, Vol. 35, pp. 91-101, 2015.
    62. Rehák, B., “Observer design for a time delay system via the Razumikhin approach”, Asian J. of Control, Vol. 19, pp. 2226-2231, 2017.
    63. Rotella, F., and Zambettakis, I., “A direct design procedure for linear state functional observers,” Automatica, Vol. 70, pp. 211-216, 2016.
    64. Sandre-Hernandez, O., Morales-Caporal, R., Rangel-Magdaleno, J., Peregrina-Barreto, H., and Hernandez-Perez, J. N., “Parameter identification of PMSMs using experimental measurements and a PSO algorithm”, IEEE Transactions on Instrumentation and Measurement, Vol. 64, pp. 2146-2154, 2015.
    65. Silva E. H. M., and Filho, C. J. A. B., “PSO efficient implementation on GPUs using low latency memory”, IEEE Latin America Transactions, Vol. 13, pp. 1619-1624, 2015.
    66. Talaš, S., and Bobál, V., “Predictive control adapting to fractional values of time delay”, Mathematical Problems in Engineering, Vol. 2018, Article ID 6416375, 6 pages, 2018.
    67. Tokunaga, A., Nakamura, M., Takami, H., and Okamoto, T., “An optimal observer design for 2-inertia system via ILQ design method”, in Proc. of the IEEE Industry Applications Society Annual Meeting, Las Vegas, NV, U.S.A., pp. 1-8, 2012.
    68. Trinh, H., and Fernando, T., Functional Observers for Dynamical Systems, Berlin: Springer, 2012.
    69. Trinh, H., Huong, D. C., Hien, L. V., and Nahavandi, S., “Design of reduced-order positive linear functional observers for positive time-delay systems”, IEEE Trans. on Circuits and Systems II: Express Briefs, Vol. 64, pp. 555-559, 2017.
    70. Tsai, J. T., Ho, W. H., Chou, J. H., and Guo, C. Y., “Optimal approximation of linear systems using Taguchi-sliding-based differential evolution algorithm,” Applied Soft Computing, Vol. 11, pp. 2007-2016, 2001.
    71. Tsai, J. T., Liu, T. K., and Chou, J. H., 2004, “Hybrid Taguchi-genetic algorithm for global numerical optimization,” IEEE Trans. on Evolutionary Computation, Vol. 8, pp. 365-377, 2004.
    72. Tsai, J. T., Chou, J. H., and Liu, T. K., “Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm”, IEEE Trans. on Neural Networks, Vol. 17, pp. 69-80, 2006.
    73. Tsui, C. C., “Observer design for systems with time-delayed states”, Int. J. of Automation and Computing, Vol. 9, pp. 105-107, 2012.
    74. Tsui, C. C., “Observer design—a survey”, Int. J. of Automation and Computing, Vol. 12, pp. 50-61, 2015.
    75. Veerachary M., and Saxena, A. R., “Optimized power stage design of low source current ripple fourth-order boost DC-DC converter: a PSO approach”, IEEE Trans. Industrial Electronics, Vol. 62, pp. 1491-1502, 2015.
    76. Weinmann, A., Uncertain Models and Robust Control, New York: Springer, 1991.
    77. Xia, Z. W., Mao, K. J., Wei, S. B., Wang, X. T., Fang, Y. Y., and Yang, S. P., “Application of genetic algorithm-support vector regression model to predict damping of cantilever beam with particle damper”, J. of Low Frequency Noise, Vibration and Active Control, Vol. 36, pp. 138-147, 2017.
    78. Xiao, S. P., Lian, H. H., Teo, K. L., Zeng, H. B., and Zhang, X. H., “A new Lyapunov functional approach to sampled-data synchronization control for delayed neural networks”, J. of the Franklin Institute, Vol. 355, pp. 8857-8873, 2018.
    79. Zak, S. H., Systems and Control, New York: Oxford University Press, 2003.
    80. Zhang, B., Wang, G. S., Chang, T. Q., and Zhang, T., “A parametric design method of reduced-order state observer in linear systems”, J. of Academy of Armored Force Engineering, Vol. 25, pp. 60-63, 2011.
    81. Zhang, B. L., Han, Q. L., Zhang, X. M., and Yu, X., “Sliding mode control with mixed current and delayed states for offshore steel jacket platforms”, IEEE Trans. on Control Systems Technology, Vol. 22, pp. 1769-1783, 2014.
    82. Zhang, D., Han, Q. L., and Jia, X., “Network-based output tracking control for T-S fuzzy systems using an event-triggered communication scheme”, Fuzzy Sets and systems, Vol. 273, pp. 26-48, 2015.
    83. Zhang, D., Han, Q. L., and Jia, X., “Network-based output tracking control for a class of T-S fuzzy systems that can not be stabilized by nondelayed output feedback controllers”, IEEE Trans. on Cybernetics, Vol. 45, pp. 1511-1524, 2015.
    84. Zhang, W., and Qi, X. H., “Two design methods of reduced-order observers and example”, J. of Ordnance Engineering College, Vol. 17, pp. 62-64, 2005.
    85. Zhang, X. M., Han, Q. L., Seuret, A., Gouaisbaut, F., and He, Y., “Overview of recent advances in stability of linear systems with time-varying delays”, IET Control Theory & Applications, Vol. 13, pp. 1-16, 2019.
    86. Zheng, G., and Bejarano, F. J., “Observer design for linear singular time-delay systems”, Automatica, Vol. 80, pp. 1-9, 2017.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE