簡易檢索 / 詳目顯示

研究生: 黃琬穎
Huang, Wan-Ying
論文名稱: 利用秀麗隱桿線蟲研究運動與抗氧化藥物改善老化及氧化壓力之影響
Effects of Exercise with Antioxidants on Anti- Senescence and Oxidative Stress in Caenorhabditis elegans
指導教授: 莊漢聲
Chuang, Han-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 87
中文關鍵詞: 運動抗氧化劑活性氧化物電驅動微型晶片超氧化物歧化酶秀麗隱桿線蟲粒子影像流速儀
外文關鍵詞: Exercise, Antioxidants, Reactive Oxygen Species, Electrotactic Microchip, Superoxide Dismutase, Caenorhabditis (C.) elegans, PIV
相關次數: 點閱:67下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 抗氧化藥物的攝取和規律的運動是目前研究中被公認可以改善老化和減少氧化壓力的兩個方式。然而,少有研究利用簡單構造的動物模型進行老化和氧化壓力的探討,例如:秀麗隱桿線蟲。由於秀麗隱桿線蟲在解剖學上的身體架構簡單,擁有超過60%與人類相似的遺傳基因,為老化的研究上提供了一個良好的平台。
    細胞損傷和老化是兩個主要在氧化壓力的磨損所造成的結果,氧化壓力的產生是因為體內的活性氧化物質和自由基的積累所引起。 隨著氧化壓力的上升,體內抗氧化的防禦系統將介入以中和活性氧化物質的毒性。藉由適度和規律的運動能夠提升體內抗氧化物質的水平,其中包含超氧化物歧化酶(superoxide dismutase, SOD)、過氧化氫酶(catalase, CAT)和穀胱甘肽過氧化物酶(glutathione peroxidase, GPx)。 相同地,透過飲食的方式攝入抗氧化劑亦能夠增加體內抗氧化物質的防禦能力,以減少細胞內ROS含量並清除過多的自由基。EUK-134是SOD /CAT合成的模擬分子作為本研究的抗氧化藥物。本研究將著重於氧化壓力途徑的探討,並假設ROS的有害作用可以透過運動及攝取抗氧化劑來增加抗氧化物質的水平以進行抑制。
    然而,為使體型極小的線蟲進行運動仍具有挑戰性。為了解決這個難題,我們設計一款微流道跑步機以訓練線蟲運動,微通道被設計成線蟲在運動訓練期間游泳的跑道。分別使用SOD和CAT基因缺陷的線蟲來研究運動或補充抗氧化劑是否能夠補償體內抗氧化酶的缺乏; 此外,將進一步探討清除自由基的效益和整體抗老化的效果。
    本研究觀察運動和抗氧化劑的長期益處,以及抗氧化酶對氧化壓力途徑的重要性。這項研究的主要目的是探討(1)體內缺乏關鍵抗氧化酶是否會減少運動和抗氧化藥物產生的益處; (2)進而探討運動和抗氧化藥物在降低ROS中的作用機制; (3)比較經由運動與抗氧化藥物處理後的線蟲對於外源性氧化壓力的抵抗能力。結果顯示,缺乏SOD和CAT的線蟲在接受運動訓練和抗氧化藥物的補充後和自身對照組相比下似乎具有抵抗外界壓力的能力,並且觀察到SOD可能在生理表現上較CAT重要。值得注意的是,運動搭配抗氧化藥物處理能夠大幅度地降低活性氧化物質的積累,並提高SOD的水平。在短時間觀察中,即使只有短時間的運動或服用抗氧化劑,仍可以維持運動和抗氧化劑的益處數天,表示短時間的治療可能潛在地產生長期效果。總體結果表明,在運動與抗氧化藥物治療後的線蟲在各項指標及實驗結果中皆顯示出最佳的抗老化能力。該研究為高等動物未來的抗老化治療提供了有希望的見解。

    Antioxidant uptake and regular exercise are two well-acknowledged measures used in anti-senescence and reduction of oxidative stress. However, little is done to understand their effects on aging in the perspective of simple animals. Caenorhabditis elegans here provides a great research platform as it is anatomically simple and shares more than 60% genetic similarities with humans. Oxidative stress, a major factor in cell damage and aging, is caused by an accumulation of reactive oxygen species (ROS) and free radicals. In response to the stress upsurge, antioxidants form a defense system to neutralize the toxicity of ROS.
    It has been well-known that moderate and regular exercise upregulates the production of antioxidants, such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), as oxidative stress increases. Similarly, reduction of intracellular ROS and the scavenging of free radicals can be achieved by increasing antioxidant defenses via dietary intake of antioxidants. We utilized synthetic SOD/catalase-mimetic molecule, EUK-134, as the antioxidant supplement. Based on the oxidative stress pathway, we assumed the deleterious effects of ROS can be suppressed by the increased antioxidant levels from exercise and antioxidant supplementation. However, making such tiny worms exercise remains challenging. To tackle the difficulty, we proposed a microfluidic treadmill to train worms. Microchannels were designed in the microfluidic treadmill as runways for worms to swim during an exercise treatment. SOD- and CAT-deficient worms were used to investigate whether exercise or supplementing with antioxidants would compensate for the deficiency of internal antioxidant enzymes. Additionally, the effectiveness of exercise and antioxidants in scavenging free radicals and the overall anti-aging impact was also explored.
    In this research, the long-term benefits of exercise and antioxidants, and the importance of antioxidant enzymes on the oxidative stress pathway were investigated. The aims of this thesis were to explore (1) whether the lack of critical antioxidants would diminish the benefits produced by exercise and antioxidant supplements; (2) the mechanisms of exercise and antioxidant supplements in reducing ROS; and (3) the exogenous oxidative stress resistance of exercise-treated and antioxidant-treated worms.
    The results showed that both SOD- and CAT-deficit worms that received exercise training and antioxidant supplements appeared to be able to resist external stress better than their control counterparts. It was also observed that SOD deficiency might had a greater negative impact than CAT deficiency. Notably, combined treatment of exercise and antioxidants effectively decreased ROS and enhanced SOD levels. In our observation, the benefits of exercise and antioxidants can usually last for days even after the treatment was ceased, suggesting the treatment may potentially result in a long-term effect. The overall result suggested that worms treated simultaneously with exercise and antioxidant supplements tend to perform best anti-aging effects among all conditioned groups. The study is expected to provide promising insight to future anti-aging therapies in higher animals.

    摘要 I ABSTRACT III 誌謝 V CONTENTS VI LIST OF TABLES IX LIST OF FIGURES X CHAPTER 1 INTRODUCTION 1 1.1 Motivation 1 1.2 Background and Literature Review 2 1.3 Effects of Exercise on Animal Modes 4 1.4 Caenorhabditis (C.) elegans 8 1.5 Mechanism of Oxidative Stress 9 1.6 External Antioxidant Effects on Relative Oxygen Species 13 1.7 Aims and Contributions of the Thesis 16 CHAPTER 2 MATERIALS AND METHODS 18 2.1 Basics of C. elegans and Cultures 18 2.1.1 C.elegans Strains 18 2.1.2 C. elegans Culture Media Protocols 19 2.1.3 Age-synchronized Assay 20 2.2 Antioxidant Supplement 21 2.3 Lifespan Assay 22 2.4 Progeny Assay 23 2.5 Assay of Superoxide Dismutase Expression 24 2.6 Measurement of Intracellular Reactive Oxygen Species 27 2.6.1 DHE Assay 27 2.6.2 ROS Assay 28 2.6.2.1 Protein Assay 28 2.6.2.2 Quantification of ROS level 29 2.7 Configuration of Electrotactic Microchip (Worm Treadmill) 30 2.7.1 Fabrication of the Electrotactic Microchip 30 2.7.2 Exercise Treatment Operation 31 2.8 Motility Assessment 32 2.8.1 Derivation of Kinetic Power 32 2.8.2 Measurement Methods 34 2.9 Statistical Analysis 35 CHAPTER 3 RESULTS AND DISCUSSIONS 36 3.1 Effect of Exercise and Antioxidant Supplement 36 3.1.1 Lifespan Assay 36 3.1.1.1 Worms Strain: Wild Type 38 3.1.1.2 Worms Strain: LB90 38 3.1.1.3 Worms Strain: GA480 39 3.1.2 Progeny Assay 40 3.1.2.1 Worms Strain: Wild Type 42 3.1.2.2 Worms Strain: LB90 43 3.1.2.3 Worms Strain: GA480 45 3.1.3 Kinetic Power 47 3.1.3.1 Worms Strain: Wild Type 48 3.1.3.2 Worms Strain: LB90 49 3.1.3.3 Worms Strain: GA480 50 3.2 Assay of Superoxide Dismutase Expression 52 3.2.1 H2O2 Effects on Superoxide Dismutase 52 3.2.2 The Effect of Exercise and Antioxidant Supplementation on SOD 54 3.2.2.1 Short-term Treatment and Measurement after 30 Minutes 54 3.2.2.2 Induced Oxidative Stress after Treatment 56 3.2.2.3 Long-term Treatment and Measurement after 180 Minutes 58 3.3 Biochemical Indices to Oxidative Stress 64 3.3.1 DHE Assay 65 3.3.2 ROS Assay 70 3.4 Effects of Exercise and Antioxidant Supplementation to External Oxidative Stress Resistance 72 CHAPTER 4 CONCLUSION 74 CHAPTER 5 FUTURE WORK 77 REFERENCES 78 APPENDIX 86

    [1] E. Anderson, and G. Shivakumar, “Effects of exercise and physical activity on anxiety,” Front Psychiatry, vol. 4, pp. 27, 2013.
    [2] K. I. Erickson, and A. F. Kramer, “Aerobic exercise effects on cognitive and neural plasticity in older adults,” British Journal of Sports Medicine, vol. 43, no. 1, pp. 22-24, 2009.
    [3] R. Doonan, J. J. McElwee, F. Matthijssens, G. A. Walker, K. Houthoofd, P. Back, A. Matscheski, J. R. Vanfleteren, and D. Gems, “Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans,” Genes & Developmen, vol. 22, no. 23, pp. 3236-3241, 2008.
    [4] R. Abrashev, E. Krumova, V. Dishliska, R. Eneva, S. Engibarov, I. Abrashev, and M. Angelova, “Differential Effect of Paraquat and Hydrogen Peroxide on the Oxidative Stress Response inVibrio CholeraeNon O1 26/06,” Biotechnology & Biotechnological Equipment, vol. 25, no. sup1, pp. 72-76, 2014.
    [5] A. Bokov, A. Chaudhuri, and A. Richardson, “The role of oxidative damage and stress in aging,” Mechanisms of Ageing and Development, vol. 125, no. 10-11, pp. 811-826, 2004.
    [6] C. H. Hillman, K. I. Erickson, and A. F. Kramer, “Be smart, exercise your heart: exercise effects on brain and cognition,” Nature Reviews Neuroscience, vol. 9, no. 1, pp. 58-65, 2008.
    [7] B. M. Nes, C. R. Gutvik, C. J. Lavie, J. Nauman, and U. Wisloff, “Personalized Activity Intelligence (PAI) for Prevention of Cardiovascular Disease and Promotion of Physical Activity,” American Journal of Medicine, vol. 130, no. 3, pp. 328-336, 2017.
    [8] M. C. Gomez-Cabrera, E. Domenech, and J. Vina, “Moderate exercise is an antioxidant: upregulation of antioxidant genes by training,” Free Radical Biology & Medicine, vol. 44, no. 2, pp. 126-131, 2008.
    [9] K. Baker, C. B. Marcus, K. Huffman, H. Kruk, B. Malfroy, and S. R. Doctrow, “Synthetic combined superoxide dismutase/catalase mimetics are protective as a delayed treatment in a rat stroke model: a key role for reactive oxygen species in ischemic brain injury,” Journal of Pharmacology and Experimental Therapeutics, vol. 284, no. 1, pp. 215-221, 1998.
    [10] M. Rodriguez, L. B. Snoek, M. De Bono, and J. E. Kammenga, “Worms under stress: C. elegans stress response and its relevance to complex human disease and aging,” Trends Genet, vol. 29, no. 6, pp. 367-374, 2013.
    [11] H. Quinteiro, M. Buzin, F. F. Conti, S. Dias Dda, D. Figueroa, S. Llesuy, M. C. Irigoyen, I. C. Sanches, and K. De Angelis, “Aerobic exercise training promotes additional cardiac benefits better than resistance exercise training in postmenopausal rats with diabetes,” Menopause, vol. 22, no. 5, pp. 534-541, 2015.
    [12] P. H. Liao, D. J. Hsieh, C. H. Kuo, C. H. Day, C. Y. Shen, C. H. Lai, R. J. Chen, V. V. Padma, W. W. Kuo, and C. Y. Huang, “Moderate exercise training attenuates aging-induced cardiac inflammation, hypertrophy and fibrosis injuries of rat hearts,” Oncotarget, vol. 6, no. 34, pp. 35383-35394, 2015.
    [13] N. Piazza, B. Gosangi, S. Devilla, R. Arking, and R. Wessells, “Exercise-training in young Drosophila melanogaster reduces age-related decline in mobility and cardiac performance,” PLoS One, vol. 4, no. 6, pp. e5886, 2009.
    [14] M. R. Zielinski, J. M. Davis, J. R. Fadel, and S. D. Youngstedt, “Influence of chronic moderate sleep restriction and exercise training on anxiety, spatial memory, and associated neurobiological measures in mice,” Behavioural Brain Research, vol. 250, pp. 74-80, 2013.
    [15] L. L. Ji, “Antioxidants and Oxidative Stress in Exercise (44453),” Proceedings of the Society for Experimental Biology and Medicine, vol. 222, no. 3, pp. 283-292, 1999.
    [16] M. C. Gomez-Cabrera, B. Ferrando, T. Brioche, F. Sanchis-Gomar, and J. Viña, “Exercise and antioxidant supplements in the elderly,” Journal of Sport and Health Science, vol. 2, no. 2, pp. 94-100, 2013.
    [17] H. S. Chuang, W. J. Kuo, C. L. Lee, I. H. Chu, and C. S. Chen, “Exercise in an electrotactic flow chamber ameliorates age-related degeneration in Caenorhabditis elegans,” Scientific Reports, vol. 6, pp. 28064, 2016.
    [18] L. Byerly, R. C. Cassada, and R. L. Russell, “The life cycle of the nematode Caenorhabditis elegans. I. Wild-type growth and reproduction,” Developmental Biology, vol. 51, no. 1, pp. 23-33, 1976.
    [19] A. K. Corsi, B. Wightman, and M. Chalfie, “A Transparent Window into Biology: A Primer on Caenorhabditis elegans,” Genetics, vol. 200, no. 2, pp. 387-407, 2015.
    [20] D. Gems, and R. Doonan, “The Nematode C aenorhabditis elegans : Oxidative Stress and Aging in the Nematode Caenorhabditis elegans,” 2008.
    [21] R. Nass, and R. D. Blakely, “The Caenorhabditis elegans dopaminergic system: opportunities for insights into dopamine transport and neurodegeneration,” Annual Review of Pharmacology and Toxicology, vol. 43, pp. 521-544, 2003.
    [22] J. White, “The Anatomy. ,” The nematode C. elegans, 1988.
    [23] M. Schieber, and N. S. Chandel, “ROS function in redox signaling and oxidative stress,” Current Biology, vol. 24, no. 10, pp. R453-462, 2014.
    [24] E. Birben, U. M. Sahiner, C. Sackesen, S. Erzurum, and O. Kalayci, “Oxidative stress and antioxidant defense,” World Allergy Organization Journal, vol. 5, no. 1, pp. 9-19, 2012.
    [25] M. D. Brand, “The sites and topology of mitochondrial superoxide production,” Experimental Gerontology, vol. 45, no. 7-8, pp. 466-472, 2010.
    [26] J. D. Lambeth, “NOX enzymes and the biology of reactive oxygen,” Nature Reviews Immunology, vol. 4, no. 3, pp. 181-189, 2004.
    [27] C. Leeuwenburgh, and J. W. Heinecke, “Oxidative stress and antioxidants in exercise,” Current Medicinal Chemistry, vol. 8, no. 7, pp. 829-838, 2001.
    [28] F. Cabreiro, D. Ackerman, R. Doonan, C. Araiz, P. Back, D. Papp, B. P. Braeckman, and D. Gems, “Increased life span from overexpression of superoxide dismutase in Caenorhabditis elegans is not caused by decreased oxidative damage,” Free Radical Biology and Medicine, vol. 51, no. 8, pp. 1575-1582, 2011.
    [29] C. F. Labuschagne, and A. B. Brenkman, “Current methods in quantifying ROS and oxidative damage in Caenorhabditis elegans and other model organism of aging,” Ageing Research Reviews, vol. 12, no. 4, pp. 918-930, 2013.
    [30] D. J. Betteridge, “What is oxidative stress?,” Metabolism, vol. 49, no. 2 Suppl 1, pp. 3-8, 2000.
    [31] R. Kohen, and A. Nyska, “Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification,” Toxicol Pathol, vol. 30, no. 6, pp. 620-650, 2002.
    [32] J. M. Moran, M. A. Ortiz-Ortiz, L. M. Ruiz-Mesa, and J. M. Fuentes, “Nitric oxide in paraquat-mediated toxicity: A review,” Journal of Biochemical and Molecular Toxicology, vol. 24, no. 6, pp. 402-409, 2010.
    [33] J. Samann, J. Hegermann, E. von Gromoff, S. Eimer, R. Baumeister, and E. Schmidt, “Caenorhabditits elegans LRK-1 and PINK-1 act antagonistically in stress response and neurite outgrowth,” Journal of Biological Chemistry, vol. 284, no. 24, pp. 16482-16491, 2009.
    [34] X. Fu, Y. Tang, B. C. Dickinson, C. J. Chang, and Z. Chang, “An oxidative fluctuation hypothesis of aging generated by imaging H(2)O(2) levels in live Caenorhabditis elegans with altered lifespans,” Biochemical and Biophysical Research Communications, vol. 458, no. 4, pp. 896-900, 2015.
    [35] L. A. Boothby, and P. L. Doering, “Vitamin C and vitamin E for Alzheimer's disease,” Annals of Pharmacotherapy, vol. 39, no. 12, pp. 2073-2080, 2005.
    [36] M. Fotuhi, P. P. Zandi, K. M. Hayden, A. S. Khachaturian, C. A. Szekely, H. Wengreen, R. G. Munger, M. C. Norton, J. T. Tschanz, C. G. Lyketsos, J. C. Breitner, and K. Welsh-Bohmer, “Better cognitive performance in elderly taking antioxidant vitamins E and C supplements in combination with nonsteroidal anti-inflammatory drugs: the Cache County Study,” Alzheimers Dement, vol. 4, no. 3, pp. 223-227, 2008.
    [37] Y. Wu, Z. Wu, P. Butko, Y. Christen, M. P. Lambert, W. L. Klein, C. D. Link, and Y. Luo, “Amyloid-beta-induced pathological behaviors are suppressed by Ginkgo biloba extract EGb 761 and ginkgolides in transgenic Caenorhabditis elegans,” Journal of Neuroscience, vol. 26, no. 50, pp. 13102-13113, 2006.
    [38] M. Chatterjee, R. Saluja, S. Kanneganti, S. Chinta, and M. Dikshit, “Biochemical and molecular evaluation of neutrophil NOS in spontaneously hypertensive rats,” Cellular and Molecular Biology), vol. 53, no. 1, pp. 84-93, 2007.
    [39] B. Frei, “Reactive oxygen species and antioxidant vitamins: mechanisms of action,” American Journal of Medicine, vol. 97, no. 3a, pp. 5S-13S; discussion 22S-28S, 1994.
    [40] S. Parthasarathy, N. Santanam, S. Ramachandran, and O. Meilhac, “Oxidants and antioxidants in atherogenesis. An appraisal,” The Journal of Lipid Research, vol. 40, no. 12, pp. 2143-2157, 1999.
    [41] M. Valko, H. Morris, and M. T. Cronin, “Metals, toxicity and oxidative stress,” Current Medicinal Chemistry, vol. 12, no. 10, pp. 1161-1208, 2005.
    [42] M. Valko, C. J. Rhodes, J. Moncol, M. Izakovic, and M. Mazur, “Free radicals, metals and antioxidants in oxidative stress-induced cancer,” Chemico-Biological Interactions, vol. 160, no. 1, pp. 1-40, 2006.
    [43] J. E. Packer, T. F. Slater, and R. L. Willson, “Direct observation of a free radical interaction between vitamin E and vitamin C,” Nature, vol. 278, pp. 737, 04/19/online, 1979.
    [44] P. M. Clarkson, and H. S. Thompson, “Antioxidants: what role do they play in physical activity and health?,” The American Journal of Clinical Nutrition, vol. 72, no. 2 Suppl, pp. 637s-46s, 2000.
    [45] S. K. Powers, and M. J. Jackson, “Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production,” Physiological Reviews, vol. 88, no. 4, pp. 1243-1276, 2008.
    [46] P. M. Tiidus, and M. E. Houston, “Vitamin E status and response to exercise training,” Sports Medicine, vol. 20, no. 1, pp. 12-23, 1995.
    [47] M. Baudry, S. Etienne, A. Bruce, M. Palucki, E. Jacobsen, and B. Malfroy, “Salen-Manganese Complexes Are Superoxide Dismutase-Mimics,” Biochemical and Biophysical Research Communications, vol. 192, no. 2, pp. 964-968, 1993.
    [48] M. Keaney, F. Matthijssens, M. Sharpe, J. Vanfleteren, and D. Gems, “Superoxide dismutase mimetics elevate superoxide dismutase activity in vivo but do not retard aging in the nematode Caenorhabditis elegans,” Free Radical Biology & Medicine, vol. 37, no. 2, pp. 239-250, 2004.
    [49] S. Melov, J. Ravenscroft, S. Malik, M. S. Gill, D. W. Walker, P. E. Clayton, D. C. Wallace, B. Malfroy, S. R. Doctrow, and G. J. Lithgow, “Extension of life-span with superoxide dismutase/catalase mimetics,” Science, vol. 289, no. 5484, pp. 1567-1569, 2000.
    [50] J. N. Sampayo, A. Olsen, and G. J. Lithgow, “Oxidative stress in Caenorhabditis elegans: protective effects of superoxide dismutase/catalase mimetics,” Aging Cell, vol. 2, no. 6, pp. 319-326, 2003.
    [51] A. J. Bruce, B. Malfroy, and M. Baudry, “beta-Amyloid toxicity in organotypic hippocampal cultures: protection by EUK-8, a synthetic catalytic free radical scavenger,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 6, pp. 2312-2316, 1996.
    [52] P. Gianello, A. Saliez, X. Bufkens, R. Pettinger, D. Misseleyn, S. Hori, and B. Malfroy, “EUK-134, a synthetic superoxide dismutase and catalase mimetic, protects rat kidneys from ischemia-reperfusion-induced damage,” Transplantation, vol. 62, no. 11, pp. 1664-1666, 1996.
    [53] C. Jung, Y. Rong, S. Doctrow, M. Baudry, B. Malfroy, and Z. Xu, “Synthetic superoxide dismutase/catalase mimetics reduce oxidative stress and prolong survival in a mouse amyotrophic lateral sclerosis model,” Neuroscience Letters, vol. 304, no. 3, pp. 157-160, 2001.
    [54] B. Malfroy, S. R. Doctrow, P. L. Orr, G. Tocco, E. V. Fedoseyeva, and G. Benichou, “Prevention and suppression of autoimmune encephalomyelitis by EUK-8, a synthetic catalytic scavenger of oxygen-reactive metabolites,” Cell Immunol, vol. 177, no. 1, pp. 62-68, 1997.
    [55] K. Pong, S. R. Doctrow, and M. Baudry, “Prevention of 1-methyl-4-phenylpyridinium- and 6-hydroxydopamine-induced nitration of tyrosine hydroxylase and neurotoxicity by EUK-134, a superoxide dismutase and catalase mimetic, in cultured dopaminergic neurons,” Brain Research, vol. 881, no. 2, pp. 182-189, 2000.
    [56] S. Pucheu, F. Boucher, T. Sulpice, N. Tresallet, Y. Bonhomme, B. Malfroy, and J. de Leiris, “EUK-8 a synthetic catalytic scavenger of reactive oxygen species protects isolated iron-overloaded rat heart from functional and structural damage induced by ischemia/reperfusion,” Cardiovascular Drugs and Therapy, vol. 10, no. 3, pp. 331-339, 1996.
    [57] Y. Rong, S. R. Doctrow, G. Tocco, and M. Baudry, “EUK-134, a synthetic superoxide dismutase and catalase mimetic, prevents oxidative stress and attenuates kainate-induced neuropathology,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 17, pp. 9897-902, 1999.
    [58] S. R. Doctrow, K. Huffman, C. B. Marcus, W. Musleh, A. Bruce, M. Baudry, and B. Malfroy, "Salen- Manganese Complexes: Combined Superoxide Dismutase/Catalase Mimics with Broad Pharmacological Efficacy," Advances in Pharmacology, H. Sies, ed., pp. 247-269: Academic Press, 1996.
    [59] D. Hoogewijs, K. Houthoofd, F. Matthijssens, J. Vandesompele, and J. R. Vanfleteren, “Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans,” BMC Molecular Biology, vol. 9, pp. 9, 2008.
    [60] S. Miwa, K. B. Beckman, and F. Muller, “Oxidative Stress in Aging:From Model Systems to Human Diseases,” pp. VIII, 320, 2008.
    [61] S. H. Togo, M. Maebuchi, S. Yokota, M. Bun-Ya, A. Kawahara, and T. Kamiryo, “Immunological detection of alkaline-diaminobenzidine-negativeperoxisomes of the nematode Caenorhabditis elegans purification and unique pH optima of peroxisomal catalase,” European Journal of Biochemistry, vol. 267, no. 5, pp. 1307-1312, 2000.
    [62] O. I. Petriv, and R. A. Rachubinski, “Lack of peroxisomal catalase causes a progeric phenotype in Caenorhabditis elegans,” Journal of Biological Chemistry, vol. 279, no. 19, pp. 19996-20001, 2004.
    [63] B. P. Braeckman, A. Smolders, P. Back, and S. De Henau, “In Vivo Detection of Reactive Oxygen Species and Redox Status in Caenorhabditis elegans,” Antioxidants & Redox Signaling, vol. 25, no. 10, pp. 577-592, 2016.
    [64] M. A. Sharpe, R. Ollosson, V. C. Stewart, and J. B. Clark, “Oxidation of nitric oxide by oxomanganese-salen complexes: a new mechanism for cellular protection by superoxide dismutase/catalase mimetics,” Biochemical Journal, vol. 366, no. Pt 1, pp. 97-107, 2002.
    [65] K. Himori, M. Abe, D. Tatebayashi, J. Lee, H. Westerblad, J. T. Lanner, and T. Yamada, “Superoxide dismutase/catalase mimetic EUK-134 prevents diaphragm muscle weakness in monocrotalin-induced pulmonary hypertension,” PLoS One, vol. 12, no. 2, pp. e0169146, 2017.
    [66] D. Decraene, K. Smaers, D. Gan, T. Mammone, M. Matsui, D. Maes, L. Declercq, and M. Garmyn, “A synthetic superoxide dismutase/catalase mimetic (EUK-134) inhibits membrane-damage-induced activation of mitogen-activated protein kinase pathways and reduces p53 accumulation in ultraviolet B-exposed primary human keratinocytes,” Journal of Investigative Dermatology, vol. 122, no. 2, pp. 484-491, 2004.
    [67] N. C. Sukul, and N. A. Croll, “Influence of potential difference and current on the electrotaxis of Caenorhaditis elegans,” Journal of Nematology, vol. 10, no. 4, pp. 314-317, 1978.
    [68] H.-S. Chuang, W.-J. Kuo, C.-L. Lee, I. H. Chu, and C.-S. Chen, “Exercise in an electrotactic flow chamber ameliorates age-related degeneration in Caenorhabditis elegans,” Scientific Reports, vol. 6, pp. 28064, 06/16/online, 2016.
    [69] R. D. Keane, and R. J. Adrian, “Theory of cross-correlation analysis of PIV images,” Applied Scientific Research, vol. 49, no. 3, pp. 191-215, 1992.
    [70] W. J. Kuo, Y. S. Sie, and H. S. Chuang, “Characterizations of kinetic power and propulsion of the nematode Caenorhabditis elegans based on a micro-particle image velocimetry system,” Biomicrofluidics, vol. 8, no. 2, pp. 024116, 2014.
    [71] J. Yuan, H-S Chuang, D. M. R. M. Gnatt, and H. H. Bau, “A Device to Measure the Propulsive Power of Nematodes,” 2011.
    [72] W.-J. Kuo, and H.-S. Chuang, "Development of an Image-Based Algorithm for the Motility Characterizations of the Nematode Caenorhabditis Elegans," 1st Global Conference on Biomedical Engineering & 9th Asian-Pacific Conference on Medical and Biological Engineering. pp. 107-110.
    [73] N. Stroustrup, B. E. Ulmschneider, Z. M. Nash, I. F. Lopez-Moyado, J. Apfeld, and W. Fontana, “The Caenorhabditis elegans Lifespan Machine,” Nature Methods, vol. 10, no. 7, pp. 665-670, 2013.
    [74] C. L. Pickett, N. Dietrich, J. Chen, C. Xiong, and K. Kornfeld, “Mated progeny production is a biomarker of aging in Caenorhabditis elegans,” G3: Genes, Genomes, Genetics, vol. 3, no. 12, pp. 2219-2232, 2013.
    [75] K. I. Zhou, Z. Pincus, and F. J. Slack, “Longevity and stress in Caenorhabditis elegans,” Aging (Albany NY), vol. 3, no. 8, pp. 733-753, 2011.
    [76] T. Sakamoto, and H. Imai, “Hydrogen peroxide produced by superoxide dismutase SOD-2 activates sperm in Caenorhabditis elegans,” Journal of Biological Chemistry, vol. 292, no. 36, pp. 14804-14813, 2017.
    [77] P. Back, F. Matthijssens, C. Vlaeminck, B. P. Braeckman, and J. R. Vanfleteren, “Effects of sod gene overexpression and deletion mutation on the expression profiles of reporter genes of major detoxification pathways in Caenorhabditis elegans,” Experimental Gerontology, vol. 45, no. 7, pp. 603-610, 2010.
    [78] J. M. Van Raamsdonk, and S. Hekimi, “Deletion of the Mitochondrial Superoxide Dismutase sod-2 Extends Lifespan in Caenorhabditis elegans,” PLOS Genetics, vol. 5, no. 2, pp. e1000361, 2009.
    [79] E. Owusu-Ansah, A. Yavari, and U. Banerjee, “A protocol for in vivo detection of reactive oxygen species,” 2008.
    [80] H. Zhao, S. Kalivendi, H. Zhang, J. Joseph, K. Nithipatikom, J. Vásquez-Vivar, and B. Kalyanaraman, “Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide,” Free Radical Biology and Medicine, vol. 34, no. 11, pp. 1359-1368, 2003.
    [81] X. Wang, H. Fang, Z. Huang, W. Shang, T. Hou, A. Cheng, and H. Cheng, “Imaging ROS signaling in cells and animals,” Journal of molecular medicine (Berlin, Germany), vol. 91, no. 8, pp. 917-927, 2013.
    [82] G. Devagi, G. Shanmugam, A. Mohankumar, P. Sundararaj, F. Dallemer, P. Kalaivani, and R. Prabhakaran, “Caenorhabditis elegans as a model for exploring the efficacy of synthesized organoruthenium complexes for aging and Alzheimer's disease a neurodegenerative disorder: A systematic approach,” Journal of Organometallic Chemistry, vol. 838, pp. 12-23, 2017.

    下載圖示 校內:2023-07-13公開
    校外:2023-07-13公開
    QR CODE