| 研究生: |
謝環澤 Hsieh, Haun-Ze |
|---|---|
| 論文名稱: |
使用模糊推論濾波器與適應性量化於SPIHT之影像壓縮研究 On Image Compression Using Fuzzy Inference Filter and Adaptive Quantization in Set Partitioning in Hierarchical Trees (SPIHT) |
| 指導教授: |
王振興
Wang, Jeen-Shing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | SPIHT之影像壓縮 、模糊推論濾波器 |
| 外文關鍵詞: | Set Partitioning in Hierarchical Trees (SPIHT), Fuzzy Inference Filter |
| 相關次數: | 點閱:90 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,在靜態影像壓縮方面,已開發出好幾種演算法,主要目的是希望將資料量大的影像圖片,壓成資料量小的檔案,使之方便在有限的網路頻寬傳輸時,不佔大量的頻寬量,且在接收還原之後,又不失去原始影像圖片所要表達的訊息。在眾多演算法當中,較受歡迎的是離散小波轉換壓縮編碼,利用小波轉換產生的子頻帶,所具有的樹狀結構特性來做編碼,其中Shapiro針對樹狀結構,提出零元樹觀念,之後有兩位學者Said 與 Pearlman針對Shapiro的方法加以修改,提出增加編碼效能的SPIHT(Set Partitioning in Hierarchical Trees) 分集階層樹編碼演算法。在本論文中,針對小波轉換後產生的樹狀結構,使用模糊技術來計算推論樹狀結構能量的分佈特性,進一步產生新的小波樹狀結構能量,使零元樹結構產生的機會降低,使得利用無算數編碼之分集階層編碼演算法(SPIHT)時,能更有效地找出重要係數,另外也針對於抓取之後的重要係數,使用適應性量化編碼法,來取代傳統零元樹對於重要係數編碼的二分逼近法,由這兩個方法的改進以達到在固定壓縮比時,使影像圖片在還原時,能有更高的品質提昇。
Several notable static image compression algorithms have been developed recently. The objective of the algorithms is to reduce the large size of image files into smaller files that can be rapidly transferred through the Internet within limited transmission bandwidth; meanwhile, the original image can be retrieved in receivers without losing too much essential information. Among these developed compression algorithms, the Discrete Wavelet Transform (DWT) decomposition is one the most popular and promising framework that provides efficient quad-tree data structures that embed space-frequency localization of subband image. Shapiro was the one who first focused on quad-tree coding and proposed the embedded zerotree wavelet (EZW) algorithm. Subsequently, Said and Pearlman proposed the set partitioning in hierarchical trees (SPIHT) to further improve the drawbacks of the EZW. In this thesis, we integrated a fuzzy inference filter into the SPIHT algorithm to compute the entropy energies of wavelet-subband coefficients and to effectively determine significant coefficients. In addition, an adaptive quantization technique instead of conventional quantization techniques for coding significant is incorporated in the SPIHT coding framework to improve the overall quality of image compression.
[1] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients,”
IEEE Trans. Acous., Speech, Signal Processing, vol. 41, no. 12, pp. 3445-3462, Dec. 1993.
[2] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec based on set
partitioning in hierarchical trees,” IEEE Trans. Circuits, Syst., Video Technol., vol. 6, pp. 243-250, June 1996.
[3] D. Taubman, “High Performance Scalable Image Compression with EBCOT,” IEEE
Trans. Image Processing, vol. 9, no. 7, pp. 1158-1170, July 2000.
[4] Z. Xiong, K. Ramchandran, M. Orchard, “Space-frequency quantization for wavelet
image coding,” IEEE Trans. Image Processing, vol. 6, no. 5, pp. 677-693, May 1997.
[5] J. W. Woods and S. D. O’Neil, “Subband Coding of images,” IEEE Trans. Acous.,
Speech, Signal Processing, vol. 34, no. 5, pp. 1278-1288, Oct. 1986.
[6] A. Huffman, “A method for the construction of minimum redundancy codes,” Proc. I. R. E., vol. 40, pp. 1098–1101, Sept. 1952.
[7] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data compression,”
Commun. ACM, vol. 30, no. 6, pp. 520–540, 1987.
[8] Jeongjin Roh and D. J. Miller, “A new set Partitioning method for wavelet-based image coding,” in Proc. Int’l. Conf. Image Processing (ICIP). vol. 1, pp. 102-106, 1998.
[9] M. W. Marcellin and T. R. Fischer, “Trellis coded quantization of memoryless and
Gauss-Markov sources,” IEEE Trans. Commun., vol. 38, no. 1, pp. 82-93, Jan. 1990.
[10] R. L. Joshi, V. J. Crump, and T. R. Fischer, “Image subband coding using arithmetic
and trellis coded quantization,” IEEE Trans. Circuits, Syst., Video Technol., vol. 5, no.
6, pp. 515-523, Dec. 1995.
[11] B. A. Banister and T. R. Fischer, “Quadtree classification and TCQ image coding,” IEEE Trans. Circuits, Syst., Video Technol., vol. 11, no. 1, pp. 3-8, Jan. 2001.
[12] H. Jafarkhani and V. Tarokh, “Design of successively refinable trellis-coded
quantizers”, IEEE Trans. Info. Theory, vol. 45, no. 5, pp. 1490-1497, July 1999.
[13] D. Mukherjee and S. K. Mitra, “Vector SPIHT for Embedded Wavelet Video and
Image Coding,” IEEE Trans. Circuits, Syst., Video Technol., vol. 13, no. 3, March
2003.
[14] H. Cai and B. Zeng, “A new SPIHT algorithm based on variable sorting thresholds,”
in Proc. IEEE Int’l. Symp. Circuits and Systems, vol. 5, pp. 231–234. May 2001.
[15] C. L. Tung, T. S. Chen, W. H. A. Wang, S. T. Yeh, “A New Improvement of SPIHT
Progressive Image Transmission,” in Proc. 5th IEEE Int’l. Symp. Multimedia Software
Engineering, pp. 10-12, Dec. 2003.
[16] L. Kim and S. W. Ra, “Performance improvement of the SPIHT coder,” in Signal
Process. : Image Commun., vol. 19, pp. 29–36, 2004.
[17] A. Munteanu, J. Cornelis, G. V. d. Auwera, and P. Cristea, “Wavelet image
compression-The quadtree coding approach,” IEEE Trans. Info. Technol. Biom., vol. 3, no. 3, pp. 176-185, Sept. 1999.
[18] N. B. Karayiannis, P.-I. Pai, and N. Zervos, “Image compression based on fuzzy
algorithms for learning vector quantization and wavelet image decomposition, “ IEEE
Trans. Image Processing, vol. 7, no. 8, pp. 1223-1230, Aug. 1998.
[19] X. Yang and P. S. Toh, “Adaptive fuzzy multilevel median filter,” IEEE Trans. Image
Processing, vol. 4, no. 5, pp. 680-682, May 1995.
[20] F. Farbiz, M. B. Menhaj, S. A. Motamedi, and M. T. Hagan, “A new fuzzy logic filter
for image enhancement,” IEEE Trans. on Systems, Man and Cybernetics, Part B. vol.
30, no. 1, pp. 110-119, Feb. 2000.
[21] M. S. Hsieh and D. C. Tseng, “Image Subband Coding Using Fuzzy Inference and
Adaptive Quantization,” IEEE Trans. on Systems, Man and Cybernetics, Part B. vol.
33, no. 3, June 2003.
[22] W. Sweldens, “The lifting scheme: A custom-design construction of biorthogonal
wavelet,” Applied and Computational Harmonic Analysis, vol. 3, pp. 186-200, 1996.
[23] 鄭嘉賢,高效能上提式離散小波轉換硬體架構之設計與實現,碩士論文,南台
科技大學,民91。
[24] A. Zadeh, “Fuzzy sets,” Inf. Control, vol. 8, pp. 338-351, 1995.
[25] 王進德、蕭大全,類神經網路與模糊控制理論入門,全華科技圖書股份有限公
司,民92。
[26] 蘇木春、張孝德,機器學習:類神經網路、模糊系統以及基因演算法則,全華科
技圖書股份有限公司,民91。
[27] 孫宗瀛、楊英魁,Fuzzy控制理論、實作與應用,全華科技圖書股份有限公司,
民92。
[28] 陳奕融,第二代模糊推論處理器之設計與研究,碩士論文,中原大學,民93。
[29] 羅名助,使用區塊編碼及SPIHT實現多重描述影像傳輸之研究,碩士論文,中原大學,民92。
[30] 江翼廷,區塊內涵式算術編碼於分集階層樹編碼後之改良,碩士論文,成功大學,民92。
[31] 陳同孝、張真誠、黃國峰,數位影像處理技術Digital Image Processing,旗標出版股份有限公司,民92。
[31] W. B. Pennebaker and J. L. Mitchell, JPEG: Still Image Compression Standard. New
York: Van Nostrand, 1993.
[32] ISO/IEC IS 10918-1, Digital Compression and Coding of Continuous-Tone Still Images, Part 1: Requirements and Guidelines, JPEG.
[33] http://fconyx.ncifcrf.gov/~lukeb/kmeans.html
[34] J. Yen and R. Langari, Fuzzy Logic Intelligence, Control, and Information, Prentice-Hall, 1999.
[35] B. Ramamurthi and A. Gersho, “Classified Vector Quantization of Images,” IEEE Trans. Commun., vol. 34, no. 11, Nov. 1986.
[36] 戴顯權,資料壓縮,紳藍出版社,民91。
[37] 鐘國亮,資料壓縮的原理與應用,全華科技圖書股份有限公司,民91。
[38] P. Stefania, Z. Paolo and C. Giuseppe, “Microprocessor-based FPGA implementation of SPIHT image compression subsystems,” Microprocessors and Microsystems, vol. 29, no. 6, pp. 299-305, Aug. 11, 2005.
[39] F. Gorschwin and M. Paul, “ SPIHT implemented in a XC4000 device,” Midwest Symposium on Circuits and Systems, vol. 1, pp. I239-I242, 2002.