簡易檢索 / 詳目顯示

研究生: 戴佩真
Tai, Pei-Chen
論文名稱: 利用差分QRS波之無失真/失真性心電訊號壓縮演算法與無線心電圖量測系統實現
ECG Lossless/Lossy Compression Algorithms Utilizing the QRS-wave Difference and Its Realization on the Wireless Holter System
指導教授: 雷曉方
Lei, Sheau-Fang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 86
中文關鍵詞: 差分QRS波無失真心電圖壓縮失真性心電圖壓縮快速傅立葉轉換遠距醫療
外文關鍵詞: QRS-wave difference, lossless ecg compression, lossy ecg compression, fast fourier transform(FFT), telemedicine
相關次數: 點閱:120下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著世界人口高齡化的現象與健康意識的抬頭,遠距居家看護系統逐漸受到重視。為了避免心電圖資訊因為長期監測而產生的龐大資料量造成網路頻寬與儲存空間的負擔,本論文提出利用差分QRS波方式降低動態範圍的無失真與失真性心電訊號壓縮演算法,並應用於無線心電圖量測系統中,使用者可視裝置儲存空間、生理訊號觀測品質等不同環境與需求,選擇採用訊號品質高的無失真資料壓縮演算法或是高壓縮率(低儲存空間)的失真性資料壓縮演算法。
    本論文所提出的無失真心電訊號壓縮演算法將心電訊號經過後向差分與差分QRS波處理後,再使用霍夫曼編碼得到壓縮資料;在失真性壓縮方面,使用快速傅立葉轉換為核心,將差分QRS波後之訊號依照R波所在位置分割區段,再將各區段內插成256點後進行頻譜轉換,最後對頻譜訊號進行後向差分、遊程長度編碼與霍夫曼編碼。
    經過MIT-BIH資料庫的48組訊號與5組實測訊號測試,無失真壓縮演算法可達2.66:1與1.22:1之平均壓縮率;而失真性壓縮演算法使用MIT-BIH測試效能,其CR、PRD、PRDB、PRDN、RMS、SNR、QS為6.69、0.13、1.37、1.90、1.20、35.07、53.69,使用實測訊號則分別為5.44、0.14、0.99、3.46、37.28、30.01、40. 21。

    With the aging population in the world and people’ awareness of health improved, “Remote Home Care System” is gradually taken seriously. To avoid the burden of bandwidth and memory capacity, which are sprung from the ECG holter system, we present the lossless and lossly compression algorithms with the method of QRS-wave difference and apply to the Wireless Holter System. With different application requirements, users can choose high-compression rate or perfect reconstructed algorithms to obtain higher signal quality and to reduce more storage memory size.
    For the proposed lossless compression algorithm, we use backward difference and QRS-wave difference to process ECG signal, and huffman encoding to produce the compressed data. In the lossy compression algorithm respect, we take fast fourier transform (FFT) as the kernel function which belongs to the lossy compression. After the procedure of QRS-wave difference, we partition off the RR interval and interpolate to 256 points. And then, we can get the compressed data by using FFT coefficients to the procedure of backward difference, run length encoding and Huffman coding.
    The proposed algorithms were evaluated by using all patterns from MIT-BIH arrhythmia database and the test pattern which we measure the ECG signal from our ECG read-out circuit. For the proposed lossless algorithm, the average CR is 2.66 and 1.22. Furthermore, for the proposed lossy algorithm, the analytic results such as CR, PRD, PRDB, PRDN, RMS, SNR, and QS’s value is 6.69, 0.13, 1.37, 1.90, 1.20, 35.07 and 53.69. By using the test pattern which we measure the ECG signal, the analytic results such as CR, PRD, PRDB, PRDN, RMS, SNR, and QS’s value is 5.44, 0.14, 0.99, 3.46, 37.28, 30.01 and 40.21.

    摘要 i ABSTRACT iii 致謝 v 目錄 vii 表目錄 xi 圖目錄 xiii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 心電圖介紹 3 1.3 心律變異性分析(HRV Analysis) 6 1.4 峰值偵測介紹 8 1.5 心律不整資料庫(MIT-BIH Arrhythmia Database) 9 1.6 章節組織 10 第二章 心電壓縮演算法介紹 11 2.1 前言 11 2.2 無失真心電訊號壓縮演算法 11 2.2.1 預測編碼(Predictive Coding) 12 2.2.2 熵編碼(Entropy Coding) 13 2.2.3 字典編碼(Dictionary-Based Coding) 15 2.2.4 區塊搜尋(Block-Sorting) 15 2.3 失真性心電訊號壓縮演算法 18 2.3.1 直接壓縮(Direct Data Compression) 18 2.3.2 轉換方法(Transformation Method) 19 2.3.3 參數提取技術(Parameter Extraction Techniques) 20 第三章 峰值偵測演算法 23 3.1 峰值偵測演算法流程 23 3.2 訊號前處理 23 3.2.1 中值濾波器 24 3.2.2 平滑化濾波器 25 3.2.3 模擬 25 3.3 峰值判讀 27 第四章 心電訊號壓縮演算法 29 4.1 心電訊號無失真壓縮演算法 29 4.1.1 壓縮演算法流程 29 4.1.2 後向差分 29 4.1.3 差分QRS波 30 4.1.4 霍夫曼編碼 33 4.1.5 重建心電訊號 35 4.2 心電訊號失真性壓縮演算法 38 4.2.1 壓縮演算法流程 38 4.2.2 壓縮演算法第一階段 39 4.2.2.1 QRS波分群 39 4.2.2.2 差分QRS波 40 4.2.2.3 後向和分 41 4.2.2.4 正規化 42 4.2.3 壓縮演算法第二階段 43 4.2.3.1 分段與內插 43 4.2.3.2 零期望值 44 4.2.3.3 快速傅立葉轉換 45 4.2.3.4 量化 45 4.2.3.5 後向差分 46 4.2.3.6 遊程長度編碼 48 4.2.3.7 霍夫曼編碼 50 4.2.4 重建心電訊號 51 第五章 演算法分析與比較結果 55 5.1 無失真壓縮演算法分析與比較 55 5.1.1 量測指標 55 5.1.2 模擬結果 55 5.1.3 文獻比較 57 5.2 失真性壓縮演算法分析與比較 59 5.2.1 量測指標 59 5.2.2 模擬結果 61 5.2.3 文獻比較 64 第六章 無線心電圖量測系統 69 6.1 系統架構說明 69 6.2 心電訊號前端電路 70 6.2.1 心電讀取電路(ECG Read-out Circuit) 70 6.2.2 類比轉數位訊號電路(ADC Circuit) 71 6.2.3 心電訊號前端電路實體規格 72 6.3 Nios II 嵌入式平台 73 6.3.1 正交分頻多工系統 75 6.3.2 RDFT晶片 76 6.4 手持式智慧型裝置(Smart Phone) 77 6.5 系統實體 79 第七章 結論與未來展望 81 參考文獻 83

    [1]行政院衛生署, http://www.doh.gov.tw/CHT2006/index_populace.aspx
    [2]謝夢蝶。遠距照護產業營運模式-以心電圖監測為例。台灣台北:國立政治大學智慧財產研究所碩士論文。2010。
    [3]IMS Research, http://www.imsresearch.com
    [4]心電圖,維基百科。http://zh.wikipedia.org/zh-tw/%E5%BF%83%E9%9B%BB%E5%9C%96#cite_note-1
    [5]The Standard 12 Lead ECG, ECG-Learning Center, http://ecg.utah.edu/lesson/1
    [6]M. Malik, J. T. Bigger, A. J. Camm, R. E. Kleiger, A. Malliani, A. J. Moss, P. J. Schwartz, and the Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology, “Heart rate variability – standards of measurement, physiological interpretation, and clinical use,” Euro. Heart J., vol. 17, pp. 354–381, 1996.
    [7]除顫器,A+醫學百科。http://cht.a-hospital.com/w/除顫器
    [8]B.-U. Kohler, C. Hennig, and R. Orglmeister, “The principles of software QRS detection,” IEEE Eng. Med. Biol. Mag., vol. 21, no. 1, pp. 42 –57, Jan.-Feb. 2002.
    [9]B.C. Yu, S. Liu, M. Lee, C.Y. Chen, and B.N. Chiang, “A nonlinear digital filter for cardiac QRS complex detection,” J. Clin. Eng., vol.10, pp. 193-201, 1985.
    [10]MIT-BIH Arrhythmia Database, http://www.physionet.org/physiobank/database/mitdb/
    [11]Z. Arnavut, “Lossless and near-lossless compression of ECG signals with block-sorting techniques,” International Journal of High Performance Computing Applications, vol. 2, pp. 50–58, Feb.2007.
    [12]History of Lossless Data Compression Algorithms, GHN: IEEE Global History Network, http://www.ieeeghn.org/wiki/index.php/History_of_Lossless_Data_Compression_Algorithms
    [13]E. Chua and W. C. Fang, “Mixed bio-signal lossless data compressor for portable brain-heart monitoring systems,” IEEE Trans. Consumer Electron., vol. 57, pp. 267–273, Feb. 2011.
    [14]S.-L. Chen and J.-G. Wang, “VLSI implementation of low-power cost-efficient lossless ECG encoder design for wireless healthcare monitoring application,” Electronics Letters , vol.49, no. 2, pp.91-93, Jan. 2013.
    [15]S.-L. Chen, H.-Y. Lee, C.-A. Chen, H.-Y. Huang, and C.-H. Luo, “Wireless body sensor network with adaptive low-power design for biometrics and healthcare applications,” IEEE Systems Journal, vol. 3, pp. 398-409, 2009.
    [16]Template: Compression methods, Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Template:Compression_methods
    [17]M. Burrows and D.J. Wheeler, “A Block-sorting Lossless Data Compression Algorithm,” SRC Research Report, May 1994.
    [18]D. Adjeroh, T. Bell, and A. Mukherjee. “The Burrows-Wheeler Transform: Data Compression, Suffix Arrays, and Pattern Matching,” Springer Publishing Company, Incorporated, 1st edition, 2008.
    [19]S. Dakua and J. Sahambi, “Lossless ECG compression for event recorder based on Burrows-Wheeler transformation and move-to-front coder,” International journal of Recent Trends in Engg., vol. 20, no. 4, pp. 120-123, 2009.
    [20]S.M.S. Jalaleddine, C.G. Hutchens, R.D. Strattan, and W.A. Coberly, “ECG Data Compression Techniques-A Unified Approach,” IEEE Trans. Biomed. Eng., vol. 37, no. 4, pp. 329-343, April 1990.
    [21]Priyanka, Indu Saini. “Analysis ECG Data Compression Techniques-A Survey Approach,” International Journal of Emerging Technology and Advanced Engineering(IJETAE) , vol. 3, issue 2, pp. 544-548, Feb. 2013.
    [22]J. R. Cox, F. M. Nolle, H. A. Fozzard, and G. C. Oliver, “AZTEC: a preprocessing program for real-time ECG rhythm analysis,” IEEE Transactions on Biomedical Engineering, Vol. 15, pp.128-129, April 1968.
    [23]W. C. Mueller, “Arrhythmia detection program for an ambulatory ECG monitor,” Biomed. Sci. Instrum., vol. 14, pp. 81-85, Apr. 1978.
    [24]J. P. Abenstein and W. J. Tompkins, “A New data-reduction algorithm for real-time ECG analysis,” IEEE Transactions on Biomedical Engineering, vol. BME-29, pp. 43-48, Jan. 1982.
    [25]A. E. Pollard and R. C. Barr, “Adaptive sampling of intracellular and extracellular cardiac potentials with the Fan method,” Medical and Biological Engineering and Computing, vol. 25, pp.261 -268, May 1987.
    [26]孫家駿。利用心跳波形間相關性之心電圖壓縮法。台灣台南:國立成功大學電機工程研究所博士論文。2005。
    [27]T.I. Mohammadpour and M.R. Karami, “ECG Compression with Thresholding of 2-D Wavelet transform coefficients and run length coding,” European Journal of Scientific Research, vol. 27, no. 2, pp. 248-257, 2009.
    [28]R. Khanam, S.N.Ahmad, “Selection of Wavelets for Evaluating SNR, PRD and CR of ECG Signal,” International Journal of Engineering Science and Innovative Technology (IJESIT), vol. 2, no. 1, pp.112-119, Jan. 2013.
    [29] S.-J. Lee, J. Kim and M. Lee, “A Real-Time ECG Data Compression and Transmission Algorithm for an e-Health Device,” IEEE Trans. Biomed. Eng., vol. 58, no. 9, pp. 2448-2455, Sept. 2011.
    [30]藍健升。應用於遠距醫療照護之心電圖壓縮演算法與其Android嵌入式平台之實現。國立成功大學電機工程學系研究所碩士論文。民國一百零一年。
    [31]H. Kim, R. F. Yazicioglu, P. Merken, C. van Hoof, and H. J. Yoo, “ECG signal compression and classification algorithm with quad level vector for ECG holter system,” IEEE Trans. Inf. Technol. Biomed., vol. 14, no. 1, pp. 93-100, Jan. 2010.
    [32]C. M. Fira and L. Goras, “An ECG signals compression method and its validation using NNs,” IEEE Trans. Biomed. Eng., vol. 55, no. 4, pp. 1319–1326, Apr. 2008.
    [33]K-means clustering, wikipedia, http://en.wikipedia.org/wiki/K-means_clustering
    [34]廖裕評、陸瑞強等編著,系統晶片設計:使用NiosⅡ,第二版,全華科技,新北市,2008年。
    [35]MIMO-OFDM, http://wshnt.kuas.edu.tw/network/n1/mimo%20ofdm.htm
    [36]吳文忻等編著,通訊系統設計與模擬,初版,鈦思科技,台北市,2007年。
    [37]ImpulseAdventure - JPEG Huffman Coding Tutorial, http://www.impulseadventure.com/photo/jpeg-huffman-coding.html

    下載圖示 校內:2018-08-31公開
    校外:2018-08-31公開
    QR CODE