| 研究生: |
許家維 Hsu, Chia-Wei |
|---|---|
| 論文名稱: |
海域圓錐貫入試驗流程及土壤判釋改進研究 Method for improving Cone Penetration Test process and soil type interpretation |
| 指導教授: |
郭玉樹
Kuo, Yu-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 離岸風場 、CPT圓錐貫入試驗 、CPT資料補遺 、簡化土層 |
| 外文關鍵詞: | offshore wind farm, cone penetration test, simplified soil layer |
| 相關次數: | 點閱:145 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我國風能開發日漸蓬勃,近年正執行多個離岸風場之地質調查項目,目前離岸風場現地調查主要採用圓錐貫入試驗(Cone Penetration Test, CPT),另搭配土壤鑽孔全取樣室內試驗成果,製作土壤地質詮釋報告(Geotechnical Investigation Report),CPT試驗能獲取相關地工參數如錐尖阻抗qc、袖套摩擦fs、孔隙水壓u2,日後可供海床土壤液化潛勢評估、樁基礎承載力、地盤反應分析等工程設計使用。
由於海氣象狀況多變,於離岸環境下工作鑽探船進行圓錐貫入試驗為一艱鉅之任務,其考驗鑽探船隻動態定位(Dynamic Positioning)能力,是否能抵抗風、波浪、海流之載重為一重要指標,本研究以我國鑽探船大地能源號為例進行船隻動態定位系統、水深量測、CPT鑽探工具規格說明,並解釋於離岸環境下進行圓錐貫入試驗流程與其需克服之難關與挑戰,以國際規範說明產出報告項目等規定。儘管上述規定增加離岸工作之安全性與可行性,進行CPT鑽探時不免還是會海床土壤不確定性而遇到鑽進失敗事件,乃電子錐具有其壓力極限,若超過壓力極限可能會導致儀器損壞,因此CPT通常具有機械保護機制自動停止鑽進以保護電子錐零件,當鑽進停止時,會使用鑽機將鑽頭壓入並破壞硬層,此動作稱之為洗孔(drill out),而被破壞之土層即為CPT數據缺失段。
我國離岸風場之CPT鑽探報告進行數據剖析,觀察到在各洗孔事件後之錐尖阻抗與袖套摩擦會有急墜後陡升的現象,而孔隙水壓斷線前後數據並無相關規律性,本研究嘗試提供一CPT數據修正補遺方法,以解決連續出現鑽進失敗事件頻繁洗孔而導致資料過度不連續問題,並進行以「最小土層厚度法」簡化土層繪製土壤剖面進行前後差異性探討,因此本研究將修正後之CPT數據進行樁基礎軸向承載力計算、地盤反應分析、土壤液化潛勢評估,進行補遺方法與簡化土層方法造成土壤剖面判釋差異對於工程應用之影響分析,為我國離岸風場開發提供一提升CPT鑽探成果品質之方法。
Due to the unpredictable weather condition, it’s challenging to conduct cone penetration tests in offshore windfarm. It depends on the dynamic positioning capability of the drilling vessel and the resistance of the load of wind, wave, and current. Therefore, this study takes Geo-Energy as an example to illustrate the dynamic positioning system, water depth measurement, and CPT drilling tool specifications of the drilling vessel and also explains the process of cone penetration test in the offshore environment. However, there are still challenges needed to be overcome. When CPT drilling is carried out, the uncertainty of seabed soil will inevitably lead to drilling refusal events. The safety-pressure limit of the electronic cone protects the drilling device from damage. The protection mechanism automatically stops drilling to protect the electronic cone parts. Since the drilling process stops, the drill bit drills and destroys the hard soil layer which is called drill-out. The damaged soil depth is where the CPT data miss.
This study provides a CPT data correction method to solve the problem of excessive discontinuity CPT data caused by frequently drilling refusal events. Furthermore, one of the simplified soil layer methods, Minimum Thickness Layer Method, will be also discussed in this study. The quality of corrected CPT data will be analyzed and discussed by calculating the axial bearing capacity of the pile foundation, ground motion analysis, and evaluating the soil liquefaction potential. The impact analysis of this study provides an improvement of both CPT drilling process and result for the development of offshore wind farm.
1. Anbazhagan P., Parihar Aditya and Rashmi H.N., “Amplification Based on Shear Wave Velocity for Seismic zonation: Comparison of Empirical Relations and Site Response Results for Shallow Engineering Bedrock Sites” Geomechanics and Engineering, An International Journal, 3(3), 189-206 (2011c)
2. ASTM D5778.23108 (2020). “Standard Test Method for Electronic Friction Cone and Piezocone Penetration Testing of Soils,” ASTM Compass.
3. ASTM D1452. “Standard Practice for Soil Exploration and Sampling by Auger Borings,” ASTM Compass.
4. ASTM D3441-16. “Standard Test Method for Mechanical Cone Penetration Testing of Soils,” ASTM Compass.
5. ASTM D5434 (2021). “Standard Guide for Field Logging of Subsurface Explorations of Soil and Rock,” ASTM Compass.
6. BS 1377(1990). “Methods of Test For Soil For Civil Engineering Purposes,”
7. BS 5930(1999). “Code of Practice For Site Investigation,”
8. Douglas, B. J., and Olsen, R.S.(1981). “Soil Classification Using Electric Cone Penetrometer,” Symposium on cone penetration testing and experience, Geotechnical Engineering Division, ASCE, St. Louis, pp. 209-277.
9. DNV-OS-H101. “Marine Operations, General,”
10. DS EN ISO 22476-1 (2012). “Electrical Cone And Piezocone Penetration Test,”
11. EN 1997-2 (2007). “Geotechnical design - Part 2: Ground investigation and testing,”
12. EN ISO 22476-1(2013). “Geotechnical investigation and testing - Field testing. Part 1: Electrical cone and piezocone penetration test.”
13. EN ISO 22476-12(2019). “Geotechnical investigation and testing - Field testing. Part 12: Mechanical cone penetration test (CPTM).”
14. Formosa 3 offshore wind farm project. “Geotechnical investigations. (2021)”
15. GEO5 Classification of Soils According to Robertson
16. Lunne, T., Robertson, P.K., and Powell, J.J.M.(1997). “Cone Penetration Testing in Geotechnical Practice,” Blackie Academic, EF Spon/Routledge Publ., New York.
17. Jamiolkowski, M., Presti Lo D.C.F., and Manassero M.(2003). “Evaluation of Relative Density and Shear Strength of Sands from CPT and DMT,”
18. Jefferies, M., and Davies, M.(1991). “Soil classification by the cone penetration test: Discussion,” Canadian geotechnical journal, Vol. 28, No. 1, pp. 173-176.
19. Panjamani, Anbazhagan. (2013). “Method for Seismic Microzonation with Geotechnical Aspects.” Disaster Advances. 6. 66-85.
20. Ramsey, N. (2002). “A Calibrated Model for the Interpretation of Cone Penetration Test (CPTs) in North Sea Quanternary Soils,” Offshore Site Investigation and Geothechnics, pp.26- 28 November, London, UK.
21. Robertson, P. K. and Cabal, K. L. (2014) “Guide to Cone Penetration Testing for Geotechnical Engineering,” Gregg Drilling & Testing, Inc., USA, 6th edition
22. Robertson, P.K.(1990). “Soil classification using the cone penetration test.” Canadian Geotechnical Journal, Vol.27, No. 1,pp.151–158.
23. Robertson, P.K. (2009). “Interpretation of cone penetration tests —an unified approach,” Canadian Geotechnical Journal, Vol.46, No. 11, pp.1337-1355.
24. Robertson, P.K. (2016)“Cone penetration test (CPT)-based soil behaviour type (SBT) classification system — an update” Canadian Geotechnical Journal, Vol.53
25. Robertson, P.K., (2010). “Soil behavior type from the CPT: an update,” 2nd International Symposium on Cone Penetration Testing,CPT’10, Huntington Beach, CA, USA. Vol.2, pp.575-583.
26. Robertson, P.K., (2010). “Soil behaviour type from the CPT: an update,” 2nd International Symposium on Cone Penetration Testing, CPT’10, Huntington Beach, CA, USA. Vol.2, pp.575-583.
27. Robertson, P.K., K.L. Cabal(2014), 6th Edition,Guide to Cone Penetration Testing for Geotechnical Engineering, Gregg Drilling and Testing, Inc., California
28. Youd, T.L., and Idriss, I.M. (2001). “Liquefaction Resistance of Soil : Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils,” Journal of the Geotechnical and Geoenvironmental Engineering, Vol.127, No.4, pp.297-313.
29. Youd, T.L., and Idriss, I.M. (2001). “Liquefaction Resistance of Soil : Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils,” Journal of the Geotechnical and Geoenvironmental Engineering, Vol.127, No.4, pp.297-313.
30. 台灣電力股份有限公司(2017),「離岸風力發電第一期計畫-示範風場新建工程招標文件(工程圖樣)」,離岸風力發電第一期計畫-示範風場新建工程公開閱覽文件。
31. 林筠蓁 (2019),「彰化地區離岸風場三維工程地質模型研究」,碩士論文,國立成功大學水利及海洋工程研究所,台南。
32. 徐宇君 (2021),「以有限元素數值模型模擬基樁打擊貫入行為」,碩士論文,國立成功大學水利及海洋工程研究所,台南。
33. 張凱竣 (2019),「考量 CPT參數不確定性之離岸風場海床土壤液化險量評估」,碩士論文,國立成功大學水利及海洋工程研究所,台南。
校內:不公開