簡易檢索 / 詳目顯示

研究生: 陳新淵
Chen, Shin-Yuan
論文名稱: SOPC嵌入式系統於高精密運動控制器之應用
Application of SOPC Embedded System on High Precision Motion Controller
指導教授: 莊智清
Juang, Jyh-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 60
中文關鍵詞: 速度估測定位控制嵌入式系統
外文關鍵詞: position control, SOPC, velocity measurement
相關次數: 點閱:76下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 運動控制系統在工業界上的應用非常的廣泛,一般來說數位控制器包含許多的部份,除了控制IC外,還需要有馬達驅動電路、回授解碼電路、周邊I/O電路及控制軟體等等整合而成,這會使得控制器較不易使用也較為昂貴。近年來,半導體產業發展迅速,因此以SOPC為目標的設計方式也相應而生,且逐漸的成為數位電路設計的主流方式。本論文之目的為使用SOPC嵌入式發展模組來實現XY平台之運動控制器。主要的特色為將編碼器回授電路、速度估測、位置控制、與路徑規畫等功能均利用單一之SOPC系統實現。本論文針對速度估測方法進行探討,控制法則採用位置速度雙重回授方式並使用NURBS命令插值器以改善定位之速度及精度,最後經由模擬及實驗結果來驗證所設計之控制器確實能使XY平台在穩定的情況下並達到精密的定位控制效果。

    The application of motion control system on the industrial area is very extensive. However, the prices of controllers become dramatically high because of their expensive and versatile components. In recent years, semiconductor industry is progressing rapidly, so the design method of SOPC arises and become a main method for digital circuit design. In this thesis, the objective is to realize the motion controller of an X-Y table by using an SOPC embedded system in which functions such as decoder, velocity estimation, position control, and trajectory generation and integrated in one embedded platform. The paper analyzes velocity estimation methods and implements them on an SOPC system. Moreover, multi-loop controller and NURBS interpolator are designed to improve the precision of tracking error. Finally, through simulation and experiment, these controllers are evaluated and examined in an X-Y table.

    摘要………I ABSTRACT…II 誌謝………III 目錄………IV 圖目錄……VI 表目錄……VIII 第一章緒論 1 1.1研究目的與動機 1 1.2文獻回顧 2 1.3論文架構 4 第二章系統分析與控制器設計 5 2.1系統鑑別 5 2.1.1摩擦力參數判別 5 2.1.2系統參數判別 9 2.2速度估測 13 2.2.1最小平方法 13 2.2.2泰勒展開式法 14 2.2.3後項差分展開法 15 2.2.4脈波時間差法 16 2.2.5速度觀察器 17 2.2.6實驗結果與分析 20 2.3 控制器設計 25 第三章 NURBS插值器設計 27 3.1 NURBS數學模型與實現 27 3.2 NURBS即時插值器 30 第四章系統介紹與實驗結果 34 4.1SOPC系統簡介 34 4.1.1NiosII發展套件簡介 35 4.1.2SOPC控制器的系統架構 36 4.2雙軸XY運動機械平台介紹 38 4.2.1交流伺服馬達驅動器 39 4.2.2精密滾珠螺桿 40 4.2.3光學尺 41 4.2.4機械平台保護電路 42 4.3控制器參數設計 44 4.3.1路徑規畫 44 4.3.2控制器參數選用 46 4.4模擬與實驗結果 47 第五章結論 55 參考文獻…………56

    [1] 黃百毅, 陳永耀, 智慧型精密定位控制系統設計, 台灣大學電機學院研究所博士論文, 2000.
    [2] 許景育, 莊智清, XY軸機械平台之位置定位控制設計, 成功大學電機系研究所碩士論文, 2004.
    [3] 李文昊, 程啟正, 交叉耦合控制在輪廓誤差之改善, 中山大學機械與機電工程研究所碩士論文, 2004.
    [4] C. G. Baril and P. O. Gutman, “Performance Enhancing Adaptive Friction Compensation for Uncertain Systems,” IEEE Transactions on Control Systems Technology, Vol. 5, No. 5, 1997, pp. 466 - 479.
    [5] J. S. Chen and J. C. Juang, “A Robust Adaptive Friction Control Scheme of Robot Manipulators,” ICGST International Journal on Automation Robotics and Autonomous Systems, Vol. 5, Issue I, Jan. 2006, pp. 11-19 .
    [6] B. K. Choi, C. H. Choi, and H. Lim, “Model-based Disturbance Attenuation for CNC Machining Centers in Cutting Process,” IEEE/ASME Transactions on Mechatronics, Vol. 4, No. 2, 1999, pp. 157 - 168.
    [7] M. K. Ciliz and M. Tomizuka, “Modeling and Compensation of Frictional Uncertainties in Motion Control: a Neural Network Based Approach,” Proceedings of the American Control Conference, Vol. 5, 1995, pp. 3269-3273.
    [8] S. Endo, H. Kobayashi, C. J. Kempf, S. Kobayashi, M. Tomizuka, and Y. Hori, “Robust Digital Tracking Controller Design for High-speed Positioning Systems,” Control Engineering Practice, Vol. 4, No. 4, 1996, pp. 527-536.
    [9] S. S. Ge, T. H. Lee, and S. X. Ren, “Adaptive Friction Compensation of Servo Mechanisms,” International Journal of Systems Science, Vol. 32, No. 4, 2001, pp. 523-532.
    [10] M. Gopi and S. Manohar, “A Unified Architecture for the Computation of B-spline Curves and Surfaces,” Parallel and Distributed Systems, Vol. 8, No. 12, 1997, pp. 1275 - 1287.
    [11] K. I. Hwu and Y. T. Yau, “Applying a Counter-based PWM Control Scheme to an FPGA-based SR Forward Converter,” Applied Power Electronics Conference and Exposition, 19-23 March 2006, pp. 5-10.
    [12] R. Kelly, J. Llamas, and R. Campa, “A Measurement Procedure for Viscous and Coulomb Friction,” IEEE Transactions on Instrumentation and Measurement, Vol. 49, No. 4, 2000, pp. 857-861.
    [13] D. II Kim, “Study on Interpolation Algorithms of CNC Machine Tools,” Industry Applications Conference, Vol. 3, 8-12 Oct. 1995, pp. 1930 - 1937.
    [14] Y. Koren, C. C. Lo, and M. Shpitalni, “CNC Interpolators: Algorithms and Analysis,” Manufacturing Science and Engineering ASME, PED-Vol. 64, 1993.
    [15] Y. S. Kung, C. S. Chen, K. I. Wong, and M. H. Tsai, “Development of a FPGA-based Control IC for PMSM Drive with Adaptive Fuzzy Control,” Industrial Electronics Society, Nov. 2005, pp. 6-10.
    [16] Y. S. Kung and G. S. Shu, “Design and Implementation of a Control IC for Vertical Articulated Robot Arm Using SOPC Technology,” Mechatronics, 10-12 July 2005, pp. 532 - 536.
    [17] H. S. Lee and M. Tomizuka, “Robust Motion Controller Design for High-accuracy Positioning Systems,” IEEE Transactions on Industrial Electronics, Vol. 43, No. 1, 1996, pp. 48 - 55.
    [18] L. Piegl and W. Tiller, “Curve and Surface Constructions Using Rational B-splines,” Computer-Aided Design, Vol. 19, No. 9, 1987, pp. 485 - 498.
    [19] Y. S. Rung, P. G. Huang, and C. W. Chen, “Development of a SOPC for PMSM Drives,” Circuits and Systems, Vol. 2, 25-28 July 2004, pp. II-329-332.
    [20] G. Song, Y. Wang, L. Cai, and R. W. Longman, “A Sliding-mode Based Smooth Adaptive Robust Controller for Friction Compensation,” Proceedings of the American Control Conference, Vol. 5, 1995, pp. 3531 - 3535.
    [21] W. Tiller, “Rational B-splines for Curve and Surface Representation,” IEEE Computer Graphics & Application, Sep. 1983, pp. 61 - 69.
    [22] T. Umeno and Y. Hori, “Robust Speed Control of DC Servomotors Using Modern Two Degrees-of-freedom Controller Design,” IEEE Transactions on Industrial Electronics, Vol. 38, No. 5, 1991, pp. 363 – 368.
    [23] P. Vedagarbha, D. M. Dawson, and M. Feemster, “Tracking Control of Mechanical Systems in the Presence of Nonlinear Dynamic Friction Effects,” IEEE Transactions on Control Systems Technology, Vol. 7, No. 4, 1999, pp. 446-456.
    [24] Z. Wang, H. Melkote, and F. Khorrami, “Robust Adaptive Friction Compensation in Servo-drives Using Position Measurement Only,” Proceedings of the 2000 IEEE International Conference on Control Applications, 2000, pp. 178 - 183.
    [25] L. Xu and B. Yao, “Adaptive Robust Control of Mechanical Systems with Nonlinear Dynamic Friction Compensation,” Proceedings of the American Control Conference, Vol. 4, 2000, pp. 2595 - 2599.
    [26] B. Yao, M. Al-Majed, and M. Tomizuka, “High-performance Robust Motion Control of Machine Tools: an Adaptive Robust Control Approach and Comparative Experiments,” IEEE/ASME Transactions on Mechatronics, Vol. 2, No. 2, 1997, pp. 63 - 76.
    [27] Q. G. Zhang and R. B. Greenway, “Development and Implementation of a NURBS Curve Motion Interpolator,” Robotics and Computer-Integrated Manufacturing, Vol. 14, 1998, pp. 27 - 36.
    [28] Y. Zhang, G. Liu, and A. A. Goldenberg, “Friction Compensation with Estimated Velocity,” Proceedings of the 2002 IEEE International Conference on Robotics and Automation, Vol. 3, 2002, pp. 2650-2655.

    下載圖示 校內:2007-07-27公開
    校外:2007-07-27公開
    QR CODE