| 研究生: |
王能誠 Wang, Neng-Cheng |
|---|---|
| 論文名稱: |
二氧化碳還原用鐵氧磁體觸媒之製備及其特性研究 Preparation and Characteristics of Ferrite Catalysts for Reduction of CO2 |
| 指導教授: |
黃啟祥
Hwang, Chii-shyang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 鐵氧磁體 、觸媒 、二氧化碳分解 、水熱法 |
| 外文關鍵詞: | CO2 decomposition, ferrite, catalyst, hydrothermally synthesized |
| 相關次數: | 點閱:56 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在以水熱法製備高表面積、高活性之 ( MnxZn1-x )Fe2O4及( MnxNi1-x )Fe2O4觸媒粉末,並探討觸媒粉末組成、活化時間、反應氣體流速對二氧化碳還原反應之影響。實驗是以Fe、Mn、Zn及Ni金屬硝酸鹽為起始原料,氨水及氫氧化鈉為沈澱劑,以水熱處理來合成奈米級之觸媒粉末,並藉由XRD、TEM、BET及ICP等儀器之分析與觀察,瞭解合成粉體之諸特性。研究結果顯示:
1. 錳鋅鐵氧磁體觸媒
經水熱條件150℃、2 h所合成之尖晶石結構(MnxZn1-x )Fe2O4觸媒粉末,其結晶子大小為21 ~ 29 nm,比表面積則為73 ~ 143 m2/g。此粉末經長時間H2還原後,會形成介穩態之氧缺陷結構且仍維持spinel相,並未有其它相之產生。在(MnxZn1-x )Fe2O4(x = 0.2、0.25、0.33、0.5、0.67、0.75、0.8)觸媒填充量為2 g及CO2反應氣體流速為5 mL/min時, CO2之分解量會隨著Zn含量之增加而增加, ( Mn0.33Zn0.67 )Fe2O4觸媒粉末,有較佳之CO2反應氣體轉化量。
2. 錳鎳鐵氧磁體觸媒
經水熱條件140℃、2 h所合成之尖晶石結構(MnxNi1-x)Fe2O4觸媒粉末,其結晶子大小為18 ~ 24 nm,比表面積則為107 ~ 153 m2/g。經長時間H2還原,與錳鋅鐵氧磁體觸媒粉末有相似之實驗結果,即仍維持spinel相。(MnxNi1-x)Fe2O4觸媒在與錳鋅鐵氧磁體觸媒相同之觸媒反應條件下,其對CO2之轉化量隨著Mn含量之增加而增加。( Mn0.67Ni0.33 )Fe2O4之觸媒粉末,具有最佳之CO2反應氣體轉化量。
To deduce CO2 gas, high specific surface and high activity of nanosized (MnxZn1-x)Fe2O4 and (MnxNi1-x)Fe2O4 powders were synthesized by the hydrothermal process. The flow rate of carbon dioxide、 the time of activation and the composition of the catalysts for the reduction carbon dioxide into carbon were investigated. The ferrite nanopowders were synthesized by the reactions pf various metal Fe、Mn、Zn and Ni nitrate aqueous. Synthesized powders are characterized by XRD, TEM, BET and ICP. The results show in the following description:
I. Mn-Zn Ferrite
Mn-Zn ferrite catalysts with nano-scale crystalline size (21 ~ 29 nm) and high specific surface area (73 ~ 143 m2/g) were synthesized by hydrothermal process at 150℃ for 2 hrs. The Mn-Zn ferrites were still spinel phase when them were annealing at 300℃. (Mn0.33Zn0.67)Fe2O4 catalyst shows the best CO2 decomposition performance after H2 reducing at 300℃ for 4 hrs.
II. Mn-Ni Ferrite
Mn-Ni ferrite catalysts with nano-scale crystalline size (18 ~ 24 nm) and high specific surface area (107 ~ 153 m2/g) were synthesized by hydrothermal process at 140℃ for 2 hrs. The Mn-Ni ferrites had structure stability as same as Mn-Zn ferrite at 300℃. (Mn0.67Ni0.33)Fe2O4 catalyst shows the best CO2 decomposition performance after H2 reducing at 300℃ for 2 hrs.
Reference
1. M. Tabata, Y. Tamaura, “Complete Reduction of Carbon-Dioxide to Carbon Using Cation-Excess Magnetite”, Nature, 346, 19, 255-256 (1990).
2. Getoff N., “Radiation-Chemistry and the Environment”, Radiation Phys. Chem., 54(4), 377-384 (1999).
3. Sjogren M., Hansson S., Akermark B., “Vitagliano A., Stereocontrol And Regiocontrol In Palladium-Catalyzed Allylic Alkylation Using 1,10-Phenanthrolines As Ligands”, Organometallics, 13(5), 1963-1971 (1994).
4. A. Miedaner, C.J. Curtis, R.M. Barkley, and D.L. DuBois, “Electrochemical Reduction of CO2 Catalyzed by Small Organophosphine Dendrimers Containing Palladium”, Inorg. Chem., 33, 5482-5490 (1994).
5. Hammarstrom L., Sun L.C., Akermark B., Styring S., “Mimicking photosystem II reactions in artificial photosynthesis: Ru(II)- polypyridine photosensitisers linked to tyrosine and manganese electron donors”, Catalysis Today, 58, 57-69 (2000).
6. Chih-Wen Hsieh, A.S.T. Chiang, Cheng-Chung Lee, Sheng-Jenn Yang, “Preparation of TiO2-B2O3 Coating by the Sol-Gel Method”, J. Non-Crystalline Solids, 144, 53-62 (1992).
7. T. Izawa, N.Yamamura, R.Uchimura, T.Yakuoh, “Damage thresholds and optical stabilities of fluoride HR coatings for 193 nm”, SPIE Proceedings, 2114, 297-308 (1993).
8. M.Tsuda, K.Soga, H.Inoue, S.Inoue, A.Makishima, “Upconversion mechanism in Er3+-doped fluorozirconate glassesunder 800 nm excitation”, J. Appl. Phys., 85(1), 29-37 (1999).
9. Chun-Lei, Zhang, Shuang Li, Tong- Hao Wu, Shao-Yi Peng, “Reduction of carbon dioxide into carbon by the active wustite and the mechanism of the reaction” Mater. Chem. Phys., 58, 129-145 (1999).
10. M. Tabata, K. Akanuma, K. Nishizawa, K. Mimori, T. Yoshida, “M. Tsuji and Y. Tamaura, “Reactivity of Oxygeb-Deficient Mn(II)-Bearing Ferrites (MnxFe3-xO4-δ) Toward CO2 Decomposition To Ccarbon”, J. Mater. Sci., 28, 6753-6760 (1993).
11. M. Tabata, K. Akanuma, T. Togawa, M.Tsuji, Y. Tamaura, “Mossbauer Study of Oxygen-Deficient Zn(II)-Bearing Ferrites (ZnxFe3-xO4-δ) and Their Reactivity Toward CO2 Decomposition to Carbon” J. Chem. Soc., 90, 1171-1175 (1994).
12. T. Kodama, Y. Wada, T, Yamamoto, M. Tsuji, Y. Tamaura, “CO2 Decomposition to Carbon by Ultrafine Ni(II)-Bearing Ferrite at 300℃”, Mater. Res. Bull., 30, 1039-1048 (1995).
13. M. Tabata, Y. Nishida, T. Kodama, K. Mimori, T. Yoshida, Y. Tamaura, “CO2 Decomposition With Oxygen-Deficient Mn(II) Ferrite”, J. Mater. Sci., 28, 971-974 (1993).
14. T. Kodama, M. Tabata, K. Tominaga, T. yoshida, Y. Tamaura, “Decomposition of CO2 and CO into Carbon with Active Wustite Prepared From Zn(II)-Bearing Ferrite”, J. Mater. Sci., 28, 547-552 (1993).
15. T. Kodama, H. Kato, S. G. Chang, N. Hasegawa, M. Tsuji, Y. Tamaura, “Decomposition of CO2 to Carbon by H2-Reduced Ni(II)- and Co(II)-Bearing Ferrites at 300℃”, J. Mater. Res., Vol. 9, No. 2, 462-467 (1994).
16. T. Kodama, M. Tabata, T. Sano, M. Tsuji, Y. Tamaura, “XRD and Mossbauer Studies on Oxygen-Deficient Ni(II)-Bearing Ferrite with A High Reactivity for CO2 Decomposition to Carbon”, J. Sol. Sta. Chem., 120, 64-69 (1995).
17. M. Tsuji, T. Kodama, T. Yoshida, Y. Kitayama, Y. Tamaura, “Preparation and CO2Methanation Activity of an Ultrafine Ni(II) Ferrite Catalyst”, J. Catal., 164, 315-321 (1996).
18. Birringer R., Herr U. and Gleiter H., “Nanocrystalline materials: a first report”, JIM Trans. Suppl. 27, 43 (1986).
19. 蔣孝澈, 陳光龍, ” 由鹽類溶液製作納米氧化物之簡介”, 化工, 46(3), 67 (1999).
20. 吳國卿, 董玉蘭, “奈米粒子材料的觸媒性質”, 化工資訊, 13, 42-46 (1999).
21. 盧裕倉, 以觸媒氧化法處理含揮發性有機物煙道氣之研究, 國立中山大學環境工程研究所碩士論文 (1999).
22. The Intergovernmental Panel on Climate Change (1995).
23. 呂宗昕, 黃文正, “次微米弛緩性強介電陶瓷粉體之溶液製備技術”, 化工, 第45卷第5期, 31-39 (1998).
24. G. W. Morey, “Hydrothermal Synthesis”, J. Am. Ceram. Soc., 36, 279 (1953).
25. L. M. Demetsyanets, A. N. Lopachev, Some Problems of Consaltants Bureau, London Press, 1 (1973).
26. D. J. Watson, C. A. Randall, R. E. Newnham and J. H. Adairm, “Hydrothermal Formation Diagram in the Lead Titanate System”, in Ceramic Powder Sci.Ⅱ, Am. Ceram. Soc. Inc., 1, 154 (1988).
27. T. Sugimoto, “Preparation of Mono-dispered Colloidal Particles”, Advances in Colliod and Interface Sci., 25, 28 (1987).
28. A. Matthews, “The Crystallization of Anatase and Rutile from Amorphous Titanium Dioxide under Hydrothermal Conditions”, Am. Mineralogist, 61, 410 (1976).
29. M. Guidi, L. Marini, G. Scandiffio and R. Cioni, “Chemical Geoghermometry in Hydrothermal Aqueous Solutions”, Geothermics, 19(5), 415 (1990).
30. W. J. Dawson, “Hydrothermal Synthesis of Advanced Ceramic Powders”, Ceram. Bull., 67(10), 1673 (1988).
31. R. R. Basca and J. P. Dougherty, “Hydrothermal Synthesis of Barium Titanate Thin Film on Titanium Metal Powder”, J. Mater. Science Letters, 14, 600 (1995).
32. Y. C. Zhou and M. N. Rahaman, “Hydrothermal Synthesis and Sintering of Ultrafine BaTiO3 Powders”, J. Mater Res., 8(7), 1784 (1993).
33. Wu Mingmei, Xu Ruren and Shou Hua Feng., “The Influence of Anions on the Products of BaTiO3 Under Hydrothermal Conditions”, J. Mater. Sci., 31, 6201 (1996).
34. S. Wada, T. Suzuki, and T. Noma, "Preparation of Barium Titanate Fine Particles by Hydrothermal Method and Their Characterization" J. Ceram. Soc. Jpn., 103, 1220-1227 (1995).
35. A. Chittofrati and E.Matijevic, ”Uniform Particles of Zinc-Oxide of Different Morphologies”, Colloids and Surf., 48, 65-78 (1990).
36. 史宗淮, 水熱法合成鋇鐵氧磁粉之研究, 國立清華大學化工研究所博士論文 (1991).
37. J. Trindade, D. Pedrosa de Jesus, P. Óbrien, ” The Preparation of Zinc Oxide and Zinc Sulfide Powders by Controlled. Precipitation from Aqueous Solutions”, J. Mater. Chem., 10, 1611 (1994).
38. C. H. Lu., W. J. Hwang, “Preparation of Pb(Zr, Ti)O3-Pb(Ni1/3Nb2/3)O3 powder from hydrothermally-treated precursors”, Mater. Lett., 27, 229 (1996).
39. S. T. Chung, K. Nagata, H. Igarashi, “Thermal hysteresis of pyroelectric signal of LATGS crystals”, Ferroelectrics, 94, 43-47 (1989).
40. 呂宗昕, “電子陶瓷之溶液法粉體製備技術”, 化工技術, 9, 34-41 (1993).
41. G. L. Messing, J. L. Mcardle and R. A. Shelleman, “The Need for Controlled Heterogeneous Nucleation in Ceramic Processing”, Mat. Res. Symp. Proc., 73, 471 (1980).
42. A. G. Walton, “The formation and Properties of Precipitates”, John Wiley & Sons, Inc., 6 (1967).
43. D. Elwell and H. J. Schell, “Crystal Growth from High-Temperature Solutions”, Academic Press, Inc., 150 (1975)..
44. T. Sugimoto, “Preparation of Monodispered Colloidal Particles”, Advances in Colloid and Interface Sci., 65, 28 (1987).
45. O. Sohnel and J. Garside, “Precipitaiton”, Botterworth- heinemann, Oxford, UK (1992).
46. 汪建民等,“陶瓷技術手冊”, 經濟部技術部、中華民國粉末冶金學會、中華民國產業發展協進會出版 (1994).
47. “行業污染特性手冊第四冊化工類一”, 行政院環保署空氣品質保護與噪音管制處 (1996).
48. Vicenzo Tufano, Maria Turco, “Kinetic Modeling of Nitric-Oxide Reduction over A High-Surface Area V2O5-TiO2 Catalyst”, Appl. Catal. B: Enviro., 2, 9-26 (1993).
49. 沈孝宗, 以波洛斯凱特型觸媒催化一氧化氮還原反應之比較研究, 國立成功大學化工研究所博士論文 (1998).
50. 楊士瑩, 黏結劑對錳鋅鐵氧磁體粉末燒結及燒結體性質之影響, 國立成功大學材料科學及工程學系 (2001).